
Objectives
■■ To specify styles for UI nodes using JavaFX CSS (§31.2).

■■ To create quadratic curve, cubic curve, and path using the QuadCurve,
CubicCurve, and Path classes (§31.3).

■■ To translate, rotate, and scale to perform coordinate transformations
for nodes (§31.4).

■■ To define a shape’s border using various types of strokes (§31.5).

■■ To create menus using the Menu, MenuItem, CheckMenuItem, and
RadioMemuItem classes (§31.6).

■■ To create context menus using the ContextMenu class (§31.7).

■■ To use SplitPane to create adjustable horizontal and vertical panes
(§31.8).

■■ To create tab panes using the TabPane control (§31.9).

■■ To create and display tables using the TableView and TableColumn
classes (§31.10).

■■ To create JavaFX user interfaces using FMXL and the visual Scene
Builder (§31.11).

Advanced JavaFX
and FXML

CHAPTER

31

M31_LIAN0182_11_SE_C31.indd 1 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-2 Chapter 31 Advanced JavaFX and FXML

31.1 Introduction
JavaFX can be used to develop comprehensive rich Internet applications.

Chapters 14–16 introduced basics of JavaFX, event-driven programming, animations, and
simple UI controls. This chapter introduces some advanced features for developing compre-
hensive GUI applications.

31.2 JavaFX CSS
JavaFX cascading style sheets can be used to specify styles for UI nodes.

JavaFX cascading style sheets are based on CSS with some extensions. CSS defines the style
for webpages. It separates the contents of webpages from its style. JavaFX CSS can be used to
define the style for the UI and separates the contents of the UI from the style. You can define
the look and feel of the UI in a JavaFX CSS file and use the style sheet to set the color, font,
margin, and border of the UI components. A JavaFX CSS file makes it easy to modify the style
without modifying the Java source code.

A JavaFX style property is defined with a prefix –fx- to distinquish it from a property in
CSS. All the available JavaFX properties are defined in http://docs.oracle.com/javafx/2/api/
javafx/scene/doc-files/cssref.html. Listing 31.1 gives an example of a style sheet.

Listing 31.1 mystyle.css
 .plaincircle {
 -fx-fill: white;
 -fx-stroke: black;
 }
 .circleborder {
 -fx-stroke-width: 5;
 -fx-stroke-dash-array: 12 2 4 2;
 }
 .border {
 -fx-border-color: black;
 -fx-border-width: 5;
 }
 #redcircle {
 -fx-fill: red;
 -fx-stroke: red;
 }
 #greencircle {
 -fx-fill: green;
 -fx-stroke: green;
 }

A style sheet uses the style class or style id to define styles. Multiple style classes can
be applied to a single node, and a style id to a unique node. The syntax .styleclass
defines a style class. Here, the style classes are named plaincircle, circleborder, and
 circleborder. The syntax #styleid defines a style id. Here, the style ids are named red-
circle and greencircle.

Each node in JavaFX has a styleClass variable of the List<String> type, which
can be obtained from invoking getStyleClass(). You can add multiple style classes to
a node and only one id to a node. Each node in JavaFX has an id variable of the String
type, which can be set using the setID(String id) method. You can set only one id
to a node.

The Scene and Parent classes have the stylesheets property, which can be
obtained from invoking the getStylesheets() method. This property is of the

Point
Key

Point
Key

M31_LIAN0182_11_SE_C31.indd 2 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.2 JavaFX CSS 31-3

ObservableList<String> type. You can add multiple style sheets into this property.
You can load a style sheet into a Scene or a Parent. Note that Parent is the superclass
for containers and UI control.

Listing 31.2 gives an example that uses the style sheet defined in Listing 31.1.

Listing 31.2 StyleSheetDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.HBox;
 4 import javafx.scene.layout.Pane;
 5 import javafx.scene.shape.Circle;
 6 import javafx.stage.Stage;
 7
 8 public class StyleSheetDemo extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 HBox hBox = new HBox(5);
12 Scene scene = new Scene(hBox, 300, 250);
13 scene.getStylesheets().add("mystyle.css"); // Load the stylesheet
14
15 Pane pane1 = new Pane();
16 Circle circle1 = new Circle(50, 50, 30);
17 Circle circle2 = new Circle(150, 50, 30);
18 Circle circle3 = new Circle(100, 100, 30);
19 pane1.getChildren().addAll(circle1, circle2, circle3);
20 pane1.getStyleClass().add("border");
21
22 circle1.getStyleClass().add("plaincircle"); // Add a style class
23 circle2.getStyleClass().add("plaincircle"); // Add a style class
24 circle3.setId("redcircle"); // Add a style id
25
26 Pane pane2 = new Pane();
27 Circle circle4 = new Circle(100, 100, 30);
28 circle4.getStyleClass().addAll("circleborder", "plainCircle");
29 circle4.setId("greencircle"); // Add a style class
30 pane2.getChildren().add(circle4);
31 pane2.getStyleClass().add("border");
32
33 hBox.getChildren().addAll(pane1, pane2);
34
35 primaryStage.setTitle("StyleSheetDemo"); // Set the window title
36 primaryStage.setScene(scene); // Place the scene in the window
37 primaryStage.show(); // Display the window
38 }
39 }

Figure 31.1 The style sheet is used to style the nodes in the scene.

(a) (b)

M31_LIAN0182_11_SE_C31.indd 3 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-4 Chapter 31 Advanced JavaFX and FXML

The program loads the style sheet from the file mystyle.css by adding it to the
stylesheets property (line 13). The file should be placed in the same directory with
the source code for it to run correctly. After the style sheet is loaded, the program sets the
style class plaincircle for circle1 and circle2 (lines 22 and 23) and sets the style
id redcircle for circle3 (line 24). The program sets style classes circleborder and
plaincircle and an id greencircle for circle4 (lines 28 and 29). The style class
border is set for both pane1 and pane2 (lines 20 and 31).

The style sheet is set in the scene (line 13). All the nodes inside the scene can use this
style sheet. What would happen if line 13 is deleted and the following line is inserted
after line 15?

pane1.getStylesheets().add("mystyle.css");

In this case, only pane1 and the nodes inside pane1 can access the style sheet, but pane2
and circle4 cannot use this style sheet. Therefore, everything in pane1 is displayed the same
as before the change, and pane2 and circle4 are displayed without applying the style class
and id, as shown in Figure 31.1b.

Note the style class plaincircle and id greencircle both are applied to circle4
(lines 28 and 29). plaincircle sets fill to white and greencircle sets fill to green. The
property settings in id take precedence over the ones in classes. Thus, circle4 is displayed
in green in this program.

 31.2.1 How do you load a style sheet to a Scene or a Parent? Can you load multiple style
sheets?

 31.2.2 If a style sheet is loaded from a node, can the pane and all its containing nodes access
the style sheet?

 31.2.3 Can a node add multiple style classes? Can a node set multiple style ids?

 31.2.4 If the same property is defined in both a style class and a style id and applied to a
node, which one has the precedence?

31.3 QuadCurve, CubicCurve, and Path
JavaFX provides the QuadCurve, CubicCurve, and Path classes for creating advanced
shapes.

Section 14.11 introduced drawing simple shapes using the Line, Rectangle, Circle,
Ellipse, Arc, Polygon, and Polyline classes. This section introduces drawing advanced
shapes using the CubicCurve, QuadCurve, and Path classes.

31.3.1 QuadCurve and CubicCurve
JavaFX provides the QuadCurve and CubicCurve classes for modeling quadratic curves and
cubic curves. A quadratic curve is mathematically defined as a quadratic polynomial. To create
a QuadCurve, use its no-arg constructor or the following constructor:

QuadCurve(double startX, double startY,
 double controlX, double controlY, double endX, double endY)

where (startX, startY) and (endX, endY) specify two endpoints and (controlX, controlY)
is a control point. The control point is usually not on the curve instead of defining the trend of
the curve, as shown in Figure 31.2a. Figure 31.3 shows the UML diagram for the QuadCurve
class.

Point
Check

Point
Key

M31_LIAN0182_11_SE_C31.indd 4 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.3 QuadCurve, CubicCurve, and Path 31-5

A cubic curve is mathematically defined as a cubic polynomial. To create a CubicCurve,
use its no-arg constructor or the following constructor:

CubicCurve(double startX, double startY, double controlX1,
 double controlY1, double controlX2, double controlY2,
 double endX, double endY)

where (startX, startY) and (endX, endY) specify two endpoints and (controlX1,
 controlY1) and (controlX2, controlY2) are two control points. The control points are
usually not on the curve, instead define the trend of the curve, as shown in Figure 31.2b.
 Figure 31.4 shows the UML diagram for the CubicCurve class.

Figure 31.2 (a) A quadratic curve is specified using three points. (b) A cubic curve is
 specified using four points.

(controlX, controlY)

(startX, startY)
(endX, endY)

(controlX1, controlY1)

(startX, startY) (endX, endY)

(controlX2, controlY2)

(a) (b)

Figure 31.3 QuadCurve defines a quadratic curve.

The getter and setter methods for property values and a getter for prop-
erty itself are provided in the class, but omitted in the UML diagram for brevity.javafx.scene.shape.QuadCurve

-startX: DoubleProperty
-startY: DoubleProperty
-endX: DoubleProperty
-endY: DoubleProperty
-controlX: DoubleProperty
-controlY: DoubleProperty

The x-coordinate of the start point (default 0).
The y-coordinate of the start point (default 0).
The x-coordinate of the end point (default 0).
The y-coordinate of the end point (default 0).
The x-coordinate of the control point (default 0).
The y-coordinate of the control point (default 0).
Creates an empty quad curve.
Creates a quad curve with the specified arguments.

+QuadCurve()
+QuadCurve(startX: double,
 startY: double, controlX:
 double, controlY: double,
 endX: double, endY: double)

The getter and setter methods for property values and a getter for property
itself are provided in the class, but omitted in the UML diagram for brevity.javafx.scene.shape.CubicCurve

-startX: DoubleProperty
-startY: DoubleProperty
-endX: DoubleProperty
-endY: DoubleProperty
-controlX1: DoubleProperty
-controlY1: DoubleProperty
-controlX2: DoubleProperty
-controlY2: DoubleProperty

The x-coordinate of the start point (default 0).
The y-coordinate of the start point (default 0).
The x-coordinate of the end point (default 0).
The y-coordinate of the end point (default 0).
The x-coordinate of the first control point (default 0).
The y-coordinate of the first control point (default 0).
The x-coordinate of the second control point (default 0).
The y-coordinate of the second control point (default 0).
Creates an empty cubic curve.
Creates a cubic curve with the specified arguments.

+CubicCurve()
+CubicCurve(startX: double,
 startY: double, controlX1:
 double, controlY1: double,
 controlX2: double,
 controlY2: double, endX:
 double, endY: double)

Figure 31.4 CubicCurve defines a quadratic curve.

M31_LIAN0182_11_SE_C31.indd 5 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-6 Chapter 31 Advanced JavaFX and FXML

Listing 31.3 gives a program that demonstrates how to draw quadratic and cubic curves.
 Figure 31.5a shows a sample run of the program.

Listing 31.3 CurveDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.text.Text;
 5 import javafx.scene.shape.Circle;
 6 import javafx.scene.paint.Color;
 7 import javafx.scene.shape.*;
 8 import javafx.stage.Stage;
 9
10 public class CurveDemo extends Application {
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 Pane pane = new Pane();
14
15 // Create a QuadCurve
16 QuadCurve quadCurve = new QuadCurve(10, 80, 40, 20, 150, 56);
17 quadCurve.setFill(Color.WHITE);
18 quadCurve.setStroke(Color.BLACK);
19
20 pane.getChildren().addAll(quadCurve, new Circle(40, 20, 6),
21 new Text(40 + 5, 20 - 5, "Control point"));
22
23 // Create a CubicCurve
24 CubicCurve cubicCurve = new CubicCurve
25 (200, 80, 240, 20, 350, 156, 450, 80);
26 cubicCurve.setFill(Color.WHITE);
27 cubicCurve.setStroke(Color.BLACK);
28
29 pane.getChildren().addAll(cubicCurve, new Circle(240, 20, 6),
30 new Text(240 + 5, 20 − 5, "Control point 1"),
31 new Circle(350, 156, 6),
32 new Text(350 + 5, 156 − 5, "Control point 2"));
33
34 Scene scene = new Scene(pane, 300, 250);
35 primaryStage.setTitle("CurveDemo"); // Set the window title
36 primaryStage.setScene(scene); // Place the scene in the window
37 primaryStage.show(); // Display the window
38 }
39 }

Figure 31.5 You can draw quadratic and cubic curves using QuadCurve and CubicCurve.

(a) (b)

The program creates a QuadCurve with the specified start, control, and end points (line 16)
and places the QuadCurve to the pane (line 20). To illustrate the control point, the program
also displays the control point as a solid circle (line 21).

M31_LIAN0182_11_SE_C31.indd 6 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.3 QuadCurve, CubicCurve, and Path 31-7

The program creates a CubicCurve with the specified start, first control, second control,
and end points (lines 24 and 25) and places the CubicCurve to the pane (line 29). To illustrate
the control points, the program also displays the control points in the pane (lines 29–32).

Note the curves are filled with color. The program sets the color to white and stroke to black
in order to display the curves (lines 17 and 18, 26 and 27). If these code lines are removed from
the program, the sample run would look like the one in Figure 31.5b.

31.3.2 Path
The Path class models an arbitrary geometric path. A path is constructed by adding path
elements into the path. The PathElement is the root class for the path elements MoveTo,
HLineTo, VLineTo, LineTo, ArcTo, QuadCurveTo, CubicCurveTo, and ClosePath.

You can create a Path using its no-arg constructor. The process of the path construction can
be viewed as drawing with a pen. The path does not have a default initial position. You need to set
an initial position by adding a MoveTo(startX, startY) path element to the path. Adding a
HLineTo(newX) element draws a horizontal line from the current position to the new x-coordinate.
Adding a VLineTo(newY) element draws a vertical line from the current position to the new
y-coordinate. Adding a LineTo(newX, newY) element draws a line from the current position to
the new position. Adding an ArcTo(radiusX, radiusY, xAxisRotation, newX, newY,
largeArcFlag, sweepArcFlag) element draws an arc from the previous position to the new
position with the specified radius. Adding a QuadCurveTo(controlX, controlY, newX,
newY) element draws a quadratic curve from the previous position to the new position with the
specified control point. Adding a CubicCurveTo(controlX1, controlY1, controlX2,
controlY2, newX, newY) element draws a cubic curve from the previous position to the new
position with the specified control points. Adding a ClosePath() element closes the path by
drawing a line that connects the starting point with the end point of the path.

Listing 31.4 gives an example that creates a path. A sample run of the program is shown
in Figure 31.6.

Listing 31.4 PathDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.*;
 6 import javafx.stage.Stage;
 7
 8 public class PathDemo extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 Pane pane = new Pane();
12
13 // Create a Path
14 Path path = new Path();
15 path.getElements().add(new MoveTo(50.0, 50.0));
16 path.getElements().add(new HLineTo(150.5));
17 path.getElements().add(new VLineTo(100.5));
18 path.getElements().add(new LineTo(200.5, 150.5));
19
20 ArcTo arcTo = new ArcTo(45, 45, 250, 100.5,
21 false, true);
22 path.getElements().add(arcTo);
23
24 path.getElements().add(new QuadCurveTo(50, 50, 350, 100));
25 path.getElements().add(
26 new CubicCurveTo(250, 100, 350, 250, 450, 10));

M31_LIAN0182_11_SE_C31.indd 7 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-8 Chapter 31 Advanced JavaFX and FXML

27
28 path.getElements().add(new ClosePath());
29
30 pane.getChildren().add(path);
31 path.setFill(null);
32 Scene scene = new Scene(pane, 300, 250);
33 primaryStage.setTitle("PathDemo"); // Set the window title
34 primaryStage.setScene(scene); // Place the scene in the window
35 primaryStage.show(); // Display the window
36 }
37 }

Figure 31.6 You can draw a path by adding path elements.

HLineTo

VLineTo

LineTo
ArcTo QuadCurveTo CubicCurveTo

ClosePath

The program creates a Path (line 14), moves its position (line 15), and adds a horizontal line
(line 16), a vertical line (line 17), and a line (line 18). The getElements() method returns
an ObservableList<PathElement>.

The program creates an ArcTo object (lines 20 and 21). The ArcTo class contains the
largeArcFlag and sweepFlag properties. By default, these property values are false. You
may set these properties to ture to display a large arc in the opposite direction.

The program adds a quadratic curve (line 24) and a cubic curve (lines 25 and 26) and closes
the path (line 28).

By default, the path is not filled. You may change the fill property in the path to specify
a color to fill the path.

 31.3.1 Create a QuadCurve with starting point (100, 75.5), control point (40, 55.5), and
end point (56, 80). Set its fill property to white and stroke to green.

 31.3.2 Create CubicCurve object with starting point (100, 75.5), control point 1 (40, 55.5),
control point 2 (78.5, 25.5), and end point (56, 80). Set its fill property to white
and stroke to green.

 31.3.3 Does a path have a default initial position? How do you set a position for a path?

 31.3.4 How do you close a path?

 31.3.5 How do you display a filled path?

31.4 Coordinate Transformations
JavaFX supports coordinate transformations using translation, rotation, and scaling.

You have used the rotate method to rotate a node. You can also perform translations and scaling.

31.4.1 Translations
You can use the setTranslateX(double x), setTranslateY(double y), and
setTranslateZ(double z) methods in the Node class to translate the coordinates for a

Point
Check

Point
Key

M31_LIAN0182_11_SE_C31.indd 8 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.4 Coordinate Transformations 31-9

node. For example, setTranslateX(5) moves the node 5 pixels to the right and setTrans-
lateY(−10) 10 pixels up from the previous position. Figure 31.7 shows a rectangle displayed
before and after applying translation. After invoking rectangle.setTranslateX(−6) and
rectangle.setTranslateY(4), the rectangle is moved 6 pixels to the left and 4 pixels
down from the previous position. Note the coordinate transformation using translation, rota-
tion, and scaling does not change the contents of the shape being transferred. For example, if
a rectangle’s x is 30 and width is 100, after applying transformations to the rectangle, its x is
still 30 and width is still 100.

Figure 31.7 After applying translation of (-6, 4), the rectangle is moved by the specified
distance relative to the previous position.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

3
4
5
6

2

0

7

previous position
translation of (– 6, 4)
current position

Listing 31.5 TranslationDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Rectangle;
 6 import javafx.stage.Stage;
 7
 8 public class TranslationDemo extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 Pane pane = new Pane();
12
13 double x = 10;
14 double y = 10;
15 java.util.Random random = new java.util.Random();
16 for (int i = 0; i < 10; i++) {
17 Rectangle rectangle = new Rectangle(10, 10, 50, 60);
18 rectangle.setFill(Color.WHITE);
19 rectangle.setStroke(Color.color(random.nextDouble(),
20 random.nextDouble(), random.nextDouble()));
21 rectangle.setTranslateX(x += 20);
22 rectangle.setTranslateY(y += 5);
23 pane.getChildren().add(rectangle);
24 }
25
26 Scene scene = new Scene(pane, 300, 250);
27 primaryStage.setTitle("TranslationDemo"); // Set the window title
28 primaryStage.setScene(scene); // Place the scene in the window
29 primaryStage.show(); // Display the window
30 }
31 }

M31_LIAN0182_11_SE_C31.indd 9 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-10 Chapter 31 Advanced JavaFX and FXML

The program repeatedly creates 10 rectangles (line 17). For each rectangle, it sets its fill
property to white (line 18) and its stroke property to a random color (lines 19 and 20), and
translates it to a new location (lines 21 and 22). The variables x and y are used to set the
translateX and translateY properties. These two variable values are changed every time
it is applied to a rectangle (see Figure 31.8).

31.4.2 Rotations
Rotation was introduced in Chapter 14. This section discusses it in more depth. You can use
the rotate(double theta) method in the Node class to rotate a node by theta degrees
from its pivot point clockwise, where theta is a double value in degrees. The pivot point is
automatically computed based on the bounds of the node. For a circle, ellipse, and a rectangle,
the pivot point is the center point of these nodes. For example, rectangle.rotate(45)
rotates the rectangle 45 degrees clockwise along the eastern direction from the center, as
shown in Figure 31.9.

Figure 31.9 After performing rectangle.rotate(45), the rectangle is rotated in 45
degrees from the center.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
1

3
4

7

5
6

2

After rotate

Before rotate

Rectangle.rotate(45)

Figure 31.8 The rectangles are displayed successively in new locations.

Listing 31.6 gives a program that demonstrates the effect of rotation of coordinates. Figure 31.10
shows a sample run of the program.

Listing 31.6 RotateDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.scene.shape.Rectangle;
 6 import javafx.stage.Stage;
 7
 8 public class RotateDemo extends Application {
 9 @Override // Override the start method in the Application class
10 public void start(Stage primaryStage) {
11 Pane pane = new Pane();
12 java.util.Random random = new java.util.Random();

M31_LIAN0182_11_SE_C31.indd 10 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.4 Coordinate Transformations 31-11

13 // The radius of the circle for anchoring rectangles
14 double radius = 90;
15 double width = 20; // Width of the rectangle
16 double height = 40; // Height of the rectangle
 17 for (int i = 0; i < 8; i++) {
18 // Center of a rectangle
19 double x = 150 + radius * Math.cos(i * 2 * Math.PI / 8);
20 double y = 150 + radius * Math.sin(i * 2 * Math.PI / 8);
21 Rectangle rectangle = new Rectangle(
22 x − width / 2, y − height / 2, width, height);
23 rectangle.setFill(Color.WHITE);
24 rectangle.setStroke(Color.color(random.nextDouble(),
25 random.nextDouble(), random.nextDouble()));
26 rectangle.setRotate(i * 360 / 8); // Rotate the rectangle
27 pane.getChildren().add(rectangle);
28 }
29
30 Scene scene = new Scene(pane, 300, 300);
31 primaryStage.setTitle("RotateDemo"); // Set the window title
32 primaryStage.setScene(scene); // Place the scene in the window
33 primaryStage.show(); // Display the window
34 }
35 }

Figure 31.10 The rotate method rotates a node.

The program creates eight rectangles in a loop (lines 17–28). The center of each rectangle is
located on the circle centered as (150, 150) (lines 19 and 20). A rectangle is created by speci-
fying its upper left corner position with width and height (lines 21 and 22). The rectangle is
rotated in line 26 and added to the pane in line 27.

31.4.3 Scaling
You can use the setScaleX(double sx), setScaleY(double sy), and setScaleY(double
sy) methods in the Node class to specify a scaling factor. The node will appear larger or
smaller depending on the scaling factor. Scaling alters the coordinate space of the node such
that each unit of distance along the axis is multiplied by the scale factor. As with rotation
transformations, scaling transformations are applied to enlarge or shrink the node around the
pivot point. For a node of the rectangle shape, the pivot point is the center of the rectangle.
For example, if you apply a scaling factor (x = 2, y = 2), the entire rectangle including the
stroke will double in size, growing to the left, right, up, and down from the center, as shown
in Figure 31.11.

M31_LIAN0182_11_SE_C31.indd 11 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-12 Chapter 31 Advanced JavaFX and FXML

Listing 31.7 gives a program that demonstrates the effect of using scaling. Figure 31.12 shows
a sample run of the program.

Listing 31.7 ScaleDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.shape.Line;
 5 import javafx.scene.text.Text;
 6 import javafx.scene.shape.Polyline;
 7 import javafx.stage.Stage;
 8
 9 public class ScaleDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 // Create a polyline to draw a sine curve
13 Polyline polyline = new Polyline();
14 for (double angle = −360; angle <= 360; angle++) {
15 polyline.getPoints().addAll(
16 angle, Math.sin(Math.toRadians(angle)));
17 }
18 polyline.setTranslateY(100);
19 polyline.setTranslateX(200);
20 polyline.setScaleX(0.5);
21 polyline.setScaleY(50);
22 polyline.setStrokeWidth(1.0 / 25);
23
24 // Draw x-axis
25 Line line1 = new Line(10, 100, 420, 100);
26 Line line2 = new Line(420, 100, 400, 90);
27 Line line3 = new Line(420, 100, 400, 110);
28
29 // Draw y-axis
30 Line line4 = new Line(200, 10, 200, 200);
31 Line line5 = new Line(200, 10, 190, 30);
32 Line line6 = new Line(200, 10, 210, 30);
33
34 // Draw x, y axis labels
35 Text text1 = new Text(380, 70, "X");
36 Text text2 = new Text(220, 20, "Y");
37
38 // Add nodes to a pane
39 Pane pane = new Pane();
40 pane.getChildren().addAll(polyline, line1, line2, line3, line4,
41 line5, line6, text1, text2);
42

Figure 31.11 After applying scaling (x = 2, y = 2), the node is doubled in size.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
1

3
4

7

5
6

2

new size after applying
scaling factor (x = 2, y = 2)

original size

M31_LIAN0182_11_SE_C31.indd 12 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.5 Strokes 31-13

43 Scene scene = new Scene(pane, 450, 200);
44 primaryStage.setTitle("ScaleDemo"); // Set the window title
45 primaryStage.setScene(scene); // Place the scene in the window
46 primaryStage.show(); // Display the window
47 }
48 }

Figure 31.12 The scale method scales the coordinates in the node.

The program creates a polyline (line 13) and adds the points for a sine curve into the polyline
(lines 14–17). Since � sin(x) � 6 = 1, the y-coordinates are too small. To see the sine curve,
the program scales the y-coordinates up by 50 times (line 21) and shrinks the x-coordinates
by half (line 20).

Note scaling also causes the stroke width to change. To compensate it, the stroke width is
purposely set to 1.0 / 25 (line 22).

 31.4.1 Can you perform a coordinate transformation on any node? Does a coordinate trans-
formation change the contents of a Shape object?

 31.4.2 Does the method setTranslateX(6) move the node’s x-coordinate to 6? Does the
method setTranslateX(6) move the node’s x-coordinate 6 pixel right from its
current location?

 31.4.3 Does the method rotate(Math.PI / 2) rotate a node 90 degrees? Does the
method rotate(90) rotate a node 90 degrees?

 31.4.4 How is the pivot point determined for performing a rotation?

 31.4.5 What method do you use to scale a node two times on its x-axis?

31.5 Strokes
Stroke defines a shape’s border line style.

JavaFX allows you to specify the attributes of a shape’s boundary using the methods in Figure 31.13.

Point
Check

Point
Key

The setStroke(paint) method sets a paint for the stroke. The width of the stroke can be
specified using the setStrokeWidth(width) method.

Figure 31.13 The Shape class contains the methods for setting stroke properties.

javafx.scene.shape.Shape

+setStroke(paint: Paint): void
+setStrokeWidth(width: double): void
+setStrokeType(type: StrokeType): void

+setStrokeLineCap(type: StrokeLineCap): void
+setStrokeLineJoin(type: StrokeLineJoin): void
+getStrokeDashArray():
 ObservableList<Double>
+setStrokeDashOffset(distance: double): void

Sets a paint for the stroke.
Sets a width for the stroke (default 1).
Sets a type for the stroke to indicate whether the stroke is placed

inside, centered, or outside of the border (default: CENTERED).
Specifies the end cap style for the stroke (default: BUTT).
Specifies how two line segments are joined (default: MITER).
Returns a list that specifies a dashed pattern for line segments.

Specifies the offset to the first segment in the dashed pattern.

M31_LIAN0182_11_SE_C31.indd 13 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-14 Chapter 31 Advanced JavaFX and FXML

The setStrokeType(type) method sets a type for the stroke. The type defines whether the
stroke is inside, outside, or in the center of the border using the constants StrokeType.INSIDE,
StrokeType.OUTSIDE, or StrokeType.CENTERED (default), as shown in Figure 31.14.

Figure 31.15 (a) No decoration for a BUTT line cap. (b) A half circle is added to an
unclosed path. (c) A square with half of the stroke width is extended to an unclosed path.

(a) BUTT (b) ROUND (c) SQUARE

Figure 31.16 Path segments can be joined in three ways: (a) MITER, (b) BEVEL, and
(c) ROUND.

(a) MITER (b) BEVEL (c) ROUND

Figure 31.17 The numbers in the list specify the opaque and transparent segments of the
stroke alternately.

10 20 30 40

…
[10.0, 20.0, 30.0, 40.0]

10 20 30 40

10 20 30 40

…
[10.0, 20.0, 30.0, 40.0, 50]

50 10 20 30 40 50

Figure 31.14 (a) No stroke is used. (b) A stroke is placed inside the border. (c) A stroke is
placed in the center of the border. (d) A stroke is placed outside of the border.

(a) (b) (c) (d)

Note for the centered style, the stroke is applied by extending the boundary of the node by
a distance of half of the strokeWidth on either side (inside and outside) of the boundary.

The setStrokeLineCap(capType) method sets an end cap style for the stroke. The styles
are defined as StrokeLineCap.BUTT (default), StrokeLineCap.ROUND, and StrokeLine-
Cap.SQUARE, as illustrated in Figure 31.15. The BUTT stroke ends an unclosed path with no
added decoration. The ROUND stroke ends an unclosed side of a path with an added half circle
whose radius is half of the stroke width. The SQUARE stroke ends an unclosed side of a path
with an added square that extends half of the stroke width.

The setStrokeLineJoin method defines the decoration applied where path segments meet.
You can specify three types of line join using the constants StrokeLineJoin.MITER (default),
StrokeLineJoin.BEVEL, and StrokeLineJoin.ROUND, as shown in Figure 31.16.

The Shape class has a property named strokeDashArray of the ObservableList<Double>
type. This property is used to define a dashed pattern for the stroke. Alternate numbers in the
list specify the lengths of the opaque and transparent segments of the dashes. For example, the
list [10.0, 20.0, 30.0, 40.0] specifies a pattern as shown in Figure 31.17.

M31_LIAN0182_11_SE_C31.indd 14 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.5 Strokes 31-15

Listing 31.8 gives a program that demonstrates the methods to set attributes for a stroke.
 Figure 31.19 shows a sample run of the program.

Listing 31.8 StrokeDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.layout.Pane;
 4 import javafx.scene.paint.Color;
 5 import javafx.stage.Stage;
 6 import javafx.scene.shape.Rectangle;
 7 import javafx.scene.shape.*;
 8
 9 public class StrokeDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 Rectangle rectangle1 = new Rectangle(20, 20, 70, 120);
13 rectangle1.setFill(Color.WHITE);
14 rectangle1.setStrokeWidth(15);
15 rectangle1.setStroke(Color.ORANGE);
16
17 Rectangle rectangle2 = new Rectangle(20, 20, 70, 120);
18 rectangle2.setFill(Color.WHITE);
19 rectangle2.setStrokeWidth(15);
20 rectangle2.setStroke(Color.ORANGE);
21 rectangle2.setTranslateX(100);
22 rectangle2.setStrokeLineJoin(StrokeLineJoin.BEVEL);
23
24 Rectangle rectangle3 = new Rectangle(20, 20, 70, 120);
25 rectangle3.setFill(Color.WHITE);
26 rectangle3.setStrokeWidth(15);
27 rectangle3.setStroke(Color.ORANGE);
28 rectangle3.setTranslateX(200);
29 rectangle3.setStrokeLineJoin(StrokeLineJoin.ROUND);
30
31 Line line1 = new Line(320, 20, 420, 20);
32 line1.setStrokeLineCap(StrokeLineCap.BUTT);
33 line1.setStrokeWidth(20);
34
35 Line line2 = new Line(320, 70, 420, 70);
36 line2.setStrokeLineCap(StrokeLineCap.ROUND);
37 line2.setStrokeWidth(20);
38
39 Line line3 = new Line(320, 120, 420, 120);
40 line3.setStrokeLineCap(StrokeLineCap.SQUARE);
41 line3.setStrokeWidth(20);
42
43 Line line4 = new Line(460, 20, 560, 120);
44 line4.getStrokeDashArray().addAll(10.0, 20.0, 30.0, 40.0);
45

Figure 31.18 The dash offset specifies on offset for the first segment.

5 20 30 40

…
[10.0, 20.0, 30.0, 40.0]

10 20 30 405 Dash offset is 5

The setStrokeDashOffset(distance) method defines the offset to the first segment in the
dash pattern. Figure 31.18 illustrates the offset 5 for the dash list [10.0, 20.0, 30.0, 40.0].

M31_LIAN0182_11_SE_C31.indd 15 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-16 Chapter 31 Advanced JavaFX and FXML

46 Pane pane = new Pane();
47 pane.getChildren().addAll(rectangle1, rectangle2, rectangle3,
48 line1, line2, line3, line4);
49
50 Scene scene = new Scene(pane, 610, 180);
51 primaryStage.setTitle("StrokeDemo"); // Set the window title
52 primaryStage.setScene(scene); // Place the scene in the window
53 primaryStage.show(); // Display the window
54 }
55
56 // Launch the program from command-line
57 public static void main(String[] args) {
58 launch(args);
59 }
60 }

Figure 31.19 You can specify the attributes for strokes.

miter join bevel join round join square cap

butt cap round cap

dash line

The program creates three rectangles (lines 12–29). Rectangle 1 uses default miter join, rec-
tangle 2 uses bevel join (line 22), and rectangle 3 uses round join (line 29).

The program creates three lines with butt, round, and square end cap (lines 31–41).
The program creates a line and sets dash pattern for this line (line 44). Note the

 strokeDashArray property is of the ObservableList<Double> type. You have to add
Double values to the list. Adding a number such as 10 would cause an error.

 31.5.1 Are the methods for setting a stroke and its attributes defined in the Node or
Shape class?

 31.5.2 How do you set a stroke width to 3 pixels?

 31.5.3 What are the stroke types? What is the default stroke type? How do you set a
stroke type?

 31.5.4 What are the stroke line join types? What is the default stroke line join type? How
do you set a stroke line join type?

 31.5.5 What are the stroke cap types? What is the default stroke cap type? How do you
set a stroke cap type?

 31.5.6 How do you specify a dashed pattern for strokes?

31.6 Menus
You can create menus in JavaFX.

Menus make selection easier and are widely used in window applications. JavaFX provides
five classes that implement menus: MenuBar, Menu, MenuItem, CheckMenuItem, and
RadioButtonMenuItem.

Point
Check

Point
Key

M31_LIAN0182_11_SE_C31.indd 16 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.6 Menus 31-17

MenuBar is a top-level menu component used to hold the menus. A menu consists of
menu items that the user can select (or toggle on or off). A menu item can be an instance of
MenuItem, CheckMenuItem, or RadioButtonMenuItem. Menu items can be associated with
nodes and keyboard accelerators.

31.6.1 Creating Menus
The sequence of implementing menus in JavaFX is as follows:

1. Create a menu bar and add it to a pane. For example, the following code creates a pane
and a menu bar, and adds the menu bar to the pane:

MenuBar menuBar = new MenuBar();
Pane pane = new Pane();
pane.getChildren().add(menuBar);

2. Create menus and add them under the menu bar. For example, the following creates two
menus and adds them to a menu bar, as shown in Figure 31.20a:

Menu menuFile = new Menu("File");
Menu menuHelp = new Menu("Help");
menuBar.getMenus().addAll(menuFile, menuHelp);

Figure 31.20 (a) The menus are placed under a menu bar. (b) Clicking a menu on the
menu bar reveals the items under the menu. (c) Clicking a menu item reveals the submenu
items under the menu item.

(a) (b) (c)

3. Create menu items and add them to the menus.

menuFile.getItems().addAll(new MenuItem("New"),
 new MenuItem("Open"), new MenuItem("Print"),
 new MenuItem("Exit"));

This code adds the menu items New, Open, Print, and Exit, in this order, to the File menu,
as shown in Figure 31.20b.

3.1. Creating submenu items.
You can also embed menus inside menus so the embedded menus become submenus.
Here is an example:

Menu softwareHelpSubMenu = new Menu("Software");
Menu hardwareHelpSubMenu = new Menu("Hardware");
menuHelp.getItems().add(softwareHelpSubMenu);
menuHelp.getItems().add(hardwareHelpSubMenu);
softwareHelpSubMenu.getItems().add(new MenuItem("Unix"));
softwareHelpSubMenu.getItems().add(new MenuItem("Windows"));
softwareHelpSubMenu.getItems().add(new MenuItem("Mac OS"));

M31_LIAN0182_11_SE_C31.indd 17 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-18 Chapter 31 Advanced JavaFX and FXML

This code adds two submenus, softwareHelpSubMenu and hardwareHelpSubMenu,
in MenuHelp. The menu items Unix, NT, and Win95 are added to softwareHelpSub-
Menu (see Figure 31.20c).

3.2. Creating check-box menu items.
You can also add a CheckMenuItem to a Menu. CheckMenuItem is a subclass of Menu-
Item that adds a Boolean state to the MenuItem and displays a check when its state is
true. You can click a menu item to turn it on or off. For example, the following statement
adds the check-box menu item Check it (see Figure 31.21a).

menuHelp.getItems().add(new CheckMenuItem("Check it"));

Figure 31.21 (a) A check box menu item lets you check or uncheck a menu item just like
a check box. (b) You can use RadioMenuItem to choose among mutually exclusive menu
choices. (c) You can set image icons and keyboard accelerators in menus.

(c)(a) (b)

3.3. Creating radio menu items.
You can also add radio menu items to a menu, using the RadioMenuItem class. This
is often useful when you have a group of mutually exclusive choices in the menu. For
example, the following statements add a submenu named Color and a set of radio
buttons for choosing a color (see Figure 31.21b):

RadioMenuItem rmiBlue, rmiYellow, rmiRed;
colorHelpSubMenu.getItems().add(rmiBlue =
 new RadioMenuItem("Blue"));
colorHelpSubMenu.getItems().add(rmiYellow =
 new RadioMenuItem("Yellow"));
colorHelpSubMenu.getItems().add(rmiRed =
 new RadioMenuItem("Red"));

ToggleGroup group = new ToggleGroup();
rmiBlue.setToggleGroup(group);
rmiYellow.setToggleGroup(group);
rmiRed.setToggleGroup(group);

4. The menu items generate ActionEvent. To handle ActionEvent, implement the
setOn Action method.

5. Image Icons and Keyboard Accelerators

The Menu, CheckMenuItem, and RadioMenuItem are the subclasses of MenuItem.
The MenuItem has a graphic property for specifying a node to be displayed in the
menu item. Usually, the graphic is an image view. The classes Menu, MenuItem, Check-
MenuItem, and RadioMenuItem have another constructor that you can use to specify a
graphic. For example, the following code adds an image to the menu, menu item, check
menu item, and radio menu item (see Figure 31.21c).

M31_LIAN0182_11_SE_C31.indd 18 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.6 Menus 31-19

Menu menuFile = new Menu("File",
 new ImageView("image/usIcon.gif"));
MenuItem menuItemOpen = new MenuItem("New",
 new ImageView("image/new.gif"));
CheckMenuItem checkMenuItem = new CheckMenuItem("Check it",
 new ImageView("image/us.gif"));
RadioMenuItem rmiBlue = new RadioMenuItem("Blue",
 new ImageView("image/us.gif"));

6. A key accelerator lets you select a menu item directly by pressing the CTRL and the
accelerator key. For example, by using the following code, you can attach the accelerator
key CTRL+N to the Open menu item:

menuItemOpen.setAccelerator(
 KeyCombination.keyCombination("Ctrl+O"));

31.6.2 Example: Using Menus
This section gives an example that creates a user interface to perform arithmetic. The inter-
face contains labels and text fields for Number 1, Number 2, and Result. The Result text field
displays the result of the arithmetic operation between Number 1 and Number 2. Figure 31.22
contains a sample run of the program.

Figure 31.22 Arithmetic operations can be performed by clicking buttons or by choosing
menu items from the Operation menu.

Here are the major steps in the program (Listing 31.9):

1. Create a menu bar and add it into a VBox. Create the menus Operation and Exit, and add
them to the menu bar. Add the menu items Add, Subtract, Multiply, and Divide under the
Operation menu and add the menu item Close under the Exit menu.

2. Create an HBox to hold labels and text fields and place it into the VBox.

3. Create an HBox to hold the four buttons labeled Add, Subtract, Multiply, and Divide and
place it into the VBox.

4. Implement the handlers to process the events from the menu items and the buttons.

Listing 31.9 MenuDemo.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Button;
 5 import javafx.scene.control.Label;
 6 import javafx.scene.control.Menu;
 7 import javafx.scene.control.MenuBar;
 8 import javafx.scene.control.MenuItem;
 9 import javafx.scene.control.TextField;
 10 import javafx.scene.input.KeyCombination;

M31_LIAN0182_11_SE_C31.indd 19 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-20 Chapter 31 Advanced JavaFX and FXML

 11 import javafx.scene.layout.HBox;
 12 import javafx.scene.layout.VBox;
 13 import javafx.stage.Stage;
 14
 15 public class MenuDemo extends Application {
 16 private TextField tfNumber1 = new TextField();
 17 private TextField tfNumber2 = new TextField();
 18 private TextField tfResult = new TextField();
 19
 20 @Override // Override the start method in the Application class
 21 public void start(Stage primaryStage) {
 22 MenuBar menuBar = new MenuBar();
 23
 24 Menu menuOperation = new Menu("Operation");
 25 Menu menuExit = new Menu("Exit");
 26 menuBar.getMenus().addAll(menuOperation, menuExit);
 27
 28 MenuItem menuItemAdd = new MenuItem("Add");
 29 MenuItem menuItemSubtract = new MenuItem("Subtract");
 30 MenuItem menuItemMultiply = new MenuItem("Multiply");
 31 MenuItem menuItemDivide = new MenuItem("Divide");
 32 menuOperation.getItems().addAll(menuItemAdd, menuItemSubtract,
 33 menuItemMultiply, menuItemDivide);
 34
 35 MenuItem menuItemClose = new MenuItem("Close");
 36 menuExit.getItems().add(menuItemClose);
 37
 38 menuItemAdd.setAccelerator(
 39 KeyCombination.keyCombination("Ctrl+A"));
 40 menuItemSubtract.setAccelerator(
 41 KeyCombination.keyCombination("Ctrl+S"));
 42 menuItemMultiply.setAccelerator(
 43 KeyCombination.keyCombination("Ctrl+M"));
 44 menuItemDivide.setAccelerator(
 45 KeyCombination.keyCombination("Ctrl+D"));
 46
 47 HBox hBox1 = new HBox(5);
 48 tfNumber1.setPrefColumnCount(2);
 49 tfNumber2.setPrefColumnCount(2);
 50 tfResult.setPrefColumnCount(2);
 51 hBox1.getChildren().addAll(new Label("Number 1:"), tfNumber1,
 52 new Label("Number 2:"), tfNumber2, new Label("Result:"),
 53 tfResult);
 54 hBox1.setAlignment(Pos.CENTER);
 55
 56 HBox hBox2 = new HBox(5);
 57 Button btAdd = new Button("Add");
 58 Button btSubtract = new Button("Subtract");
 59 Button btMultiply = new Button("Multiply");
 60 Button btDivide = new Button("Divide");
 61 hBox2.getChildren().addAll(btAdd, btSubtract, btMultiply, btDivide);
 62 hBox2.setAlignment(Pos.CENTER);
 63
 64 VBox vBox = new VBox(10);
 65 vBox.getChildren().addAll(menuBar, hBox1, hBox2);
 66 Scene scene = new Scene(vBox, 300, 250);
 67 primaryStage.setTitle("MenuDemo"); // Set the window title
 68 primaryStage.setScene(scene); // Place the scene in the window
 69 primaryStage.show(); // Display the window
 70

M31_LIAN0182_11_SE_C31.indd 20 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.6 Menus 31-21

 71 // Handle menu actions
 72 menuItemAdd.setOnAction(e -> perform('+'));
 73 menuItemSubtract.setOnAction(e -> perform('−'));
 74 menuItemMultiply.setOnAction(e -> perform('*'));
 75 menuItemDivide.setOnAction(e -> perform('/'));
 76 menuItemClose.setOnAction(e -> System.exit(0));
 77
 78 // Handle button actions
 79 btAdd.setOnAction(e -> perform('+'));
 80 btSubtract.setOnAction(e -> perform('−'));
 81 btMultiply.setOnAction(e -> perform('*'));
 82 btDivide.setOnAction(e -> perform('/'));
 83 }
 84
 85 private void perform(char operator) {
 86 double number1 = Double.parseDouble(tfNumber1.getText());
 87 double number2 = Double.parseDouble(tfNumber2.getText());
 88
 89 double result = 0;
 90 switch (operator) {
 91 case '+': result = number1 + number2; break;
 92 case '−': result = number1 − number2; break;
 93 case '*': result = number1 * number2; break;
 94 case '/': result = number1 / number2; break;
 95 }
 96
 97 tfResult.setText(result + "");
 98 }
100 }

The program creates a menu bar (line 22), which holds two menus: menuOperation and
menuExit (lines 24–36). The menuOperation contains four menu items for doing arithmetic:
Add, Subtract, Multiply, and Divide. The menuExit contains the menu item Close for exiting
the program. The menu items in the Operation menu are created with keyboard accelerators
(lines 38–45).

The labels and text fields are placed in an HBox (lines 47–54) and four buttons are placed
in another HBox (lines 56–62). The menu bar and these two HBoxes are added to a VBox (line
65), which is placed in the scene (line 66).

The user enters two numbers in the number fields. When an operation is chosen from the
menu, its result, involving two numbers, is displayed in the Result field. The user can also click
the buttons to perform the same operation.

The program sets actions for the menu items and buttons in lines 72–82. The private method
perform(char operator) (lines 85–98) retrieves operands from the text fields in Number 1 and
Number 2, applies the binary operator on the operands, and sets the result in the Result text field.

 31.6.1 How do you create a menu bar, menu, menu item, check menu item, and radio menu
item?

 31.6.2 How do you place a menu into a menu bar? How do you place a menu item, check
menu item, and radio menu item into a menu?

 31.6.3 Can you place a menu item into another menu item or a check menu or a radio menu
item into a menu item?

 31.6.4 How do you associate an image with a menu, menu item, check menu item, and radio
menu item?

 31.6.5 How do you associate an accelerator CTRL+O with a menu item, check menu item,
and radio menu item?

Point
Check

M31_LIAN0182_11_SE_C31.indd 21 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-22 Chapter 31 Advanced JavaFX and FXML

31.7 Context Menus
You can create context menus in JavaFX.

A context menu, also known as a popup menu, is like a regular menu, but does not have a menu
bar and can float anywhere on the screen. Creating a context menu is similar to creating a
regular menu. First, you create an instance of ContextMenu, and then you can add MenuItem,
CheckMenuItem, and RadioMenuItem to the context menu. For example, the following code
creates a ContextMenu, then adds MenuItems into it:

ContextMenu contextMenu = new ContextMenu();
ContextMenu.getItems().add(new MenuItem("New"));
ContextMenu.getItems().add(new MenuItem("Open"));

A regular menu is always added to a menu bar, but a context menu is associated with a parent
node and is displayed using the show method in the ContextMenu class. You specify the parent
node and the location of the context menu, using the coordinate system of the parent like this:

contextMenu.show(node, x, y);

Customarily, you display a context menu by pointing to a GUI component and clicking a
certain mouse button, the so-called popup trigger. Popup triggers are system dependent. In
Windows, the context menu is displayed when the right mouse button is released. In Motif, the
context menu is displayed when the third mouse button is pressed and held down.

Listing 31.10 gives an example that creates a pane. When the mouse points to the pane,
clicking a mouse button displays a context menu, as shown in Figure 31.23.

Point
Key

Figure 31.23 A context menu is displayed when the popup trigger is issued on the pane.

Here are the major steps in the program (Listing 31.10):

1. Create a context menu using ContextMenu. Create menu items for New, Open, Print,
and Exit using MenuItem.

2. Add the menu items into the context menu.

3. Create a pane and place it in the scene.

4. Implement the handler to process the events from the menu items.

5. Implement the mousePressed handler to display the context menu.

Listing 31.10 ContextMenuDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.ContextMenu;
 4 import javafx.scene.control.MenuItem;
 5 import javafx.scene.image.ImageView;
 6 import javafx.scene.layout.Pane;
 7 import javafx.stage.Stage;
 8

M31_LIAN0182_11_SE_C31.indd 22 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.8 SplitPane 31-23

 9 public class ContextMenuDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) {
12 ContextMenu contextMenu = new ContextMenu();
13 MenuItem menuItemNew = new MenuItem("New",
14 new ImageView("image/new.gif"));
15 MenuItem menuItemOpen = new MenuItem("Open",
16 new ImageView("image/open.gif"));
17 MenuItem menuItemPrint = new MenuItem("Print",
18 new ImageView("image/print.gif"));
19 MenuItem menuItemExit = new MenuItem("Exit");
20 contextMenu.getItems().addAll(menuItemNew, menuItemOpen,
21 menuItemPrint, menuItemExit);
22
23 Pane pane = new Pane();
24 Scene scene = new Scene(pane, 300, 250);
25 primaryStage.setTitle("ContextMenuDemo"); // Set the window title
26 primaryStage.setScene(scene); // Place the scene in the window
27 primaryStage.show(); // Display the window
28
29 pane.setOnMousePressed(
30 e -> contextMenu.show(pane, e.getScreenX(), e.getScreenY()));
31
32 menuItemNew.setOnAction(e -> System.out.println("New"));
33 menuItemOpen.setOnAction(e -> System.out.println("Open"));
34 menuItemPrint.setOnAction(e -> System.out.println("Print"));
35 menuItemExit.setOnAction(e -> System.exit(0));
36 }
37 }

The process of creating context menus is similar to the process for creating regular menus. To
create a context menu, create a ContextMenu as the basis (line 12) and add MenuItems to it
(lines 13–21).

To show a context menu, use the show method by specifying the parent node and the loca-
tion for the context menu (lines 29 and 30). The show method is invoked when the context
menu is triggered by a mouse click on the pane (line 30).

 31.7.1 How do you create a context menu? How do you add menu items, check menu items,
and radio menu items into a context menu?

 31.7.2 How do you show a context menu?

31.8 SplitPane
The SplitPane class can be used to display multiple panes and allow the user to
adjust the size of the panes.

The SplitPane is a control that contains two components with a separate bar known as a
divider, as shown in Figure 31.24.

Point
Check

Point
Key

Figure 31.24 SplitPane divides a container into two parts.

(a) Horizontal orientation (b) Vertical orientation

M31_LIAN0182_11_SE_C31.indd 23 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-24 Chapter 31 Advanced JavaFX and FXML

Listing 31.11 gives an example that uses radio buttons to let the user select a country and
displays the country’s flag and description in separate sides, as shown in Figure 31.26. The
description of the currently selected layout manager is displayed in a text area. The radio but-
tons, buttons, and text area are placed in two split panes.

Listing 31.11 SplitPaneDemo.java
 1 import javafx.application.Application;
 2 import javafx.geometry.Orientation;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.RadioButton;
 5 import javafx.scene.control.ScrollPane;
 6 import javafx.scene.control.SplitPane;
 7 import javafx.scene.control.TextArea;
 8 import javafx.scene.control.ToggleGroup;
 9 import javafx.scene.image.Image;
10 import javafx.scene.image.ImageView;
11 import javafx.scene.layout.StackPane;
12 import javafx.scene.layout.VBox;
13 import javafx.stage.Stage;
14
15 public class SplitPaneDemo extends Application {
16 private Image usImage = new Image(
17 "http://www.cs.armstrong.edu/liang/common/image/us.gif");
18 private Image ukImage = new Image(
19 "http://www.cs.armstrong.edu/liang/common/image/uk.gif");
20 private Image caImage = new Image(
21 "http://www.cs.armstrong.edu/liang/common/image/ca.gif");
22 private String usDescription = "Description for US ...";
23 private String ukDescription = "Description for UK ...";
24 private String caDescription = "Description for CA ...";
25
26 @Override // Override the start method in the Application class
27 public void start(Stage primaryStage) {
28 VBox vBox = new VBox(10);
29 RadioButton rbUS = new RadioButton("US");

Figure 31.25 SplitPane provides methods to specify the properties of a split pane and for manipulating the
components in a split pane.

The getter and setter methods for property values and
a getter for property itself are provided in the class, but
 omitted in the UML diagram for brevity.

javafx.scene.control.Control

javax.scene.control.SplitPane

−orientation: ObjectProperty<Orientation> Specifies the orientation of the pane.

Constructs a default split pane with horizontal orientation.
Returns a list of items in the pane.

+SplitPane()
+getItems(): ObservableList<Node>

The two sides separated by the divider can appear in horizontal or vertical orientation. The
divider separating two sides can be dragged to change the amount of space occupied by
each side. Figure 31.25 shows the frequently used properties, constructors, and methods in
SplitPane.

M31_LIAN0182_11_SE_C31.indd 24 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.8 SplitPane 31-25

30 RadioButton rbUK = new RadioButton("UK");
31 RadioButton rbCA = new RadioButton("CA");
32 vBox.getChildren().addAll(rbUS, rbUK, rbCA);
33
34 SplitPane content = new SplitPane();
35 content.setOrientation(Orientation.VERTICAL);
36 ImageView imageView = new ImageView(usImage);
37 StackPane imagePane = new StackPane();
38 imagePane.getChildren().add(imageView);
39 TextArea taDescription = new TextArea();
40 taDescription.setText(usDescription);
41 content.getItems().addAll(
42 imagePane, new ScrollPane(taDescription));
43
44 SplitPane sp = new SplitPane();
45 sp.getItems().addAll(vBox, content);
46
47 Scene scene = new Scene(sp, 300, 250);
48 primaryStage.setTitle("SplitPaneDemo"); // Set the window title
49 primaryStage.setScene(scene); // Place the scene in the window
50 primaryStage.show(); // Display the window
51
52 // Group radio buttons
53 ToggleGroup group = new ToggleGroup();
54 rbUS.setToggleGroup(group);
55 rbUK.setToggleGroup(group);
56 rbCA.setToggleGroup(group);
57
58 rbUS.setSelected(true);
59 rbUS.setOnAction(e -> {
60 imageView.setImage(usImage);
61 taDescription.setText(usDescription);
62 });
63
64 rbUK.setOnAction(e -> {
65 imageView.setImage(ukImage);
66 taDescription.setText(ukDescription);
67 });
68
69 rbCA.setOnAction(e -> {
70 imageView.setImage(caImage);
71 taDescription.setText(caDescription);
72 });
73 }
74 }

Figure 31.26 You can adjust the component size in the split panes.

M31_LIAN0182_11_SE_C31.indd 25 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-26 Chapter 31 Advanced JavaFX and FXML

The program places three radio buttons in a VBox (lines 28–32) and creates a vertical split
pane for holding an image view and a text area (lines 34–42). Split panes can be embedded.
The program creates a horizontal split pane and places the VBox and the vertical split pane
into it (lines 44 and 45).

Adding a split pane to an existing split pane results in three split panes. The program creates two
split panes (lines 34, 42) to hold a panel for radio buttons, a panel for buttons, and a scroll pane.

The program groups radio buttons (lines 53–56) and processes the action for radio buttons
(lines 59–72).

 31.8.1 How do you create a horizontal SplitPane? How do you create a vertical
SplitPane?

 31.8.2 How do you add items into a SplitPane? Can you add a SplitPane to another
SplitPane?

31.9 TabPane
The TabPane class can be used to display multiple panes with tabs.

TabPane is a useful control that provides a set of mutually exclusive tabs, as shown in
Figure 31.27. You can switch between a group of tabs. Only one tab is visible at a time. A
Tab can be added to a TabPane. Tabs in a TabPane can be placed in the position top, left,
bottom, or right.

Point
Check

Point
Key

Figure 31.27 TabPane holds a group of tabs.

Each tab represents a single page. Tabs are defined in the Tab class. Tabs can contain any
Node such as a pane, a shape, or a control. A tab can contain another pane. Therefore, you can
create a multilayered tab pane. Figures 31.28 and 31.29 show the frequently used properties,
constructors, and methods in TabPane and Tab.

Figure 31.28 TabPane displays and manages the tabs.

The getter and setter methods for property values
and a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

javafx.scene.control.Control

javafx.scene.control.TabPane

-side: ObjectProperty<Side> The position of the tab in the tab pane. Possible values are:
Side.TOP, Side.BOTTOM, Side.LEFT, and Side.RIGHT
(default: Side.TOP).

Creates a default Tab Pane.
Returns a list of tabs in this Tab Pane.

+TabPane()
+getTabs(): ObservableList<Tab>

M31_LIAN0182_11_SE_C31.indd 26 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.9 TabPane 31-27

Listing 31.12 gives an example that uses a tab pane with four tabs to display four types of fig-
ures: line, rectangle, rounded rectangle, and oval. You can select a figure to display by clicking
the corresponding tab, as shown in Figure 31.27.

Listing 31.12 TabPaneDemo.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Tab;
 4 import javafx.scene.control.TabPane;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.scene.shape.Circle;
 7 import javafx.scene.shape.Ellipse;
 8 import javafx.scene.shape.Line;
 9 import javafx.scene.shape.Rectangle;
10 import javafx.stage.Stage;
11
12 public class TabPaneDemo extends Application {
13 @Override // Override the start method in the Application class
14 public void start(Stage primaryStage) {
15 TabPane tabPane = new TabPane();
16 Tab tab1 = new Tab("Line");
17 StackPane pane1 = new StackPane();
18 pane1.getChildren().add(new Line(10, 10, 80, 80));
19 tab1.setContent(pane1);
20 Tab tab2 = new Tab("Rectangle");
21 tab2.setContent(new Rectangle(10, 10, 200, 200));
22 Tab tab3 = new Tab("Circle");
23 tab3.setContent(new Circle(50, 50, 20));
24 Tab tab4 = new Tab("Ellipse");
25 tab4.setContent(new Ellipse(10, 10, 100, 80));
26 tabPane.getTabs().addAll(tab1, tab2, tab3, tab4);
27
28 Scene scene = new Scene(tabPane, 300, 250);
29 primaryStage.setTitle("DisplayFigure"); // Set the window title
30 primaryStage.setScene(scene); // Place the scene in the window
31 primaryStage.show(); // Display the window
32 }
33 }

Figure 31.29 Tab contains a node.

The getter and setter methods for property values
and a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

java.lang.Object

javafx.scene.control.Tab

-content: ObjectProperty<Node>

-contextMenu:

 ObjectProperty<ContextMenu>

-graphics: ObjectProperty<Node>

-id: StringProperty

-text: StringProperty

-tooltip: StringProperty

The content associated with the tab.

The context menu associated with the tab.

The graphics in the tab.

The id for the tab.

The text shown in the tab.

The tooltip associated with the tab.

Constructs a default tab.

Constructs a tab with the specified string.

+Tab()

+Tab(text: String)

M31_LIAN0182_11_SE_C31.indd 27 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-28 Chapter 31 Advanced JavaFX and FXML

The program creates a tab pane (line 15) and four tabs (lines 16, 20, 22, and 24). A stack pane
is created to hold a line (line 18) and placed into tab1 (line 19). A rectangle, circle, and oval
are created and placed into tab2, tab3, and tab4. Note the line is centered in tab1 because
it is placed in a stack pane. The other shapes are directly placed into the tab. They are displayed
at the upper left corner of the tab.

By default, the tabs are placed at the top of the tab pane. You can use the setSide method
to change its location.

 31.9.1 How do you create a tab pane? How do you create a tab? How do you add a tab to
a tab pane?

 31.9.2 How do you place the tabs on the left of the tab pane?

 31.9.3 Can a tab have a text as well as an image? Write the code to set an image for tab1
in Listing 31.12.

31.10 TableView
You can display tables using the TableView class.

TableView is a control that displays data in rows and columns in a two-dimensional grid, as
shown in Figure 31.30.

Point
Check

Point
Key

Figure 31.30 TableView displays data in a table.

TableView, TableColumn, and TableCell are used to display and manipulate a table.
TableView displays a table. TableColumn defines the columns in a table. TableCell rep-
resents a cell in the table. Creating a TableView is a multistep process. First, you need to
create an instance of TableView and associate data with the TableView. Second, you need
to create columns using the TableColumn class and set a column cell value factory to specify
how to populate all cells within a single TableColumn.

Listing 31.13 gives a simple example to demonstrate using TableView and TableColumn.
A sample run of the program is shown in Figure 31.31.

Listing 31.13 TableViewDemo.java
 1 import javafx.application.Application;
 2 import javafx.beans.property.SimpleBooleanProperty;
 3 import javafx.beans.property.SimpleDoubleProperty;
 4 import javafx.beans.property.SimpleStringProperty;
 5 import javafx.collections.FXCollections;
 6 import javafx.collections.ObservableList;
 7 import javafx.scene.Scene;
 8 import javafx.scene.control.TableColumn;
 9 import javafx.scene.control.TableView;
 10 import javafx.scene.control.cell.PropertyValueFactory;
 11 import javafx.scene.layout.Pane;
 12 import javafx.stage.Stage;

M31_LIAN0182_11_SE_C31.indd 28 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.10 TableView 31-29

 13
 14 public class TableViewDemo extends Application {
 15 @Override // Override the start method in the Application class
 16 public void start(Stage primaryStage) {
 17 TableView<Country> tableView = new TableView<>();
 18 ObservableList<Country> data =
 19 FXCollections.observableArrayList(
 20 new Country("USA", "Washington DC", 280, true),
 21 new Country("Canada", "Ottawa", 32, true),
 22 new Country("United Kingdom", "London", 60, true),
 23 new Country("Germany", "Berlin", 83, true),
 24 new Country("France", "Paris", 60, true));
 25 tableView.setItems(data);
 26
 27 TableColumn countryColumn = new TableColumn("Country");
 28 countryColumn.setMinWidth(100);
 29 countryColumn.setCellValueFactory(
 30 new PropertyValueFactory<Country, String>("country"));
 31
 32 TableColumn capitalColumn = new TableColumn("Capital");
 33 capitalColumn.setMinWidth(100);
 34 capitalColumn.setCellValueFactory(
 35 new PropertyValueFactory<Country, String>("capital"));
 36
 37 TableColumn populationColumn =
 38 new TableColumn("Population (million)");
 39 populationColumn.setMinWidth(200);
 40 populationColumn.setCellValueFactory(
 41 new PropertyValueFactory<Country, Double>("population"));
 42
 43 TableColumn democraticColumn =
 44 new TableColumn("Is Democratic?");
 45 democraticColumn.setMinWidth(200);
 46 democraticColumn.setCellValueFactory(
 47 new PropertyValueFactory<Country, Boolean>("democratic"));
 48
 49 tableView.getColumns().addAll(countryColumn, capitalColumn,
 50 populationColumn, democraticColumn);
 51
 52 Pane pane = new Pane();
 53 pane.getChildren().add(tableView);
 54 Scene scene = new Scene(pane, 300, 250);
 55 primaryStage.setTitle("TableViewDemo"); // Set the window title
 56 primaryStage.setScene(scene); // Place the scene in t he window
 57 primaryStage.show(); // Display the window
 58 }
 59
 60 public static class Country {
 61 private final SimpleStringProperty country;
 62 private final SimpleStringProperty capital;
 63 private final SimpleDoubleProperty population;
 64 private final SimpleBooleanProperty democratic;
 65
 66 private Country(String country, String capital,
 67 double population, boolean democratic) {
 68 this.country = new SimpleStringProperty(country);
 69 this.capital = new SimpleStringProperty(capital);
 70 this.population = new SimpleDoubleProperty(population);
 71 this.democratic = new SimpleBooleanProperty(democratic);
 72 }

M31_LIAN0182_11_SE_C31.indd 29 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-30 Chapter 31 Advanced JavaFX and FXML

 73
 74 public String getCountry() {
 75 return country.get();
 76 }
 77
 78 public void setCountry(String country) {
 79 this.country.set(country);
 80 }
 81
 82 public String getCapital() {
 83 return capital.get();
 84 }
 85
 86 public void setCapital(String capital) {
 87 this.capital.set(capital);
 88 }
 89
 90 public double getPopulation() {
 91 return population.get();
 92 }
 93
 94 public void setPopulation(double population) {
 95 this.population.set(population);
 96 }
 97
 98 public boolean isDemocratic() {
 99 return democratic.get();
100 }
101
102 public void setDemocratic(boolean democratic) {
103 this.democratic.set(democratic);
104 }
105 }
106 }

The program creates a TableView (line 17). The TableView class is a generic class whose
concrete type is Country. Therefore, this TableView is for displaying Country. The table data
is an ObservableList<Country>. The program creates the list (lines 18–24) and associates
the list with the TableView (line 25).

The program creates a TableColumn for each column in the table (lines 27–47). A Prop-
ertyValueFactory object is created and set for each column (line 30). This object is used
to populate the data in the column. The PropertyValueFactory<S, T> class is a generic
class. S is for the class displayed in the TableView and T is the class for the values in the
column. The PropertyValueFactory object associates a property in class S with a column.

When you create a table in a JavaFX application, it is a best practice to define the data
model in a class. The Country class defines the data for TableView. Each property in the
class defines a column in the table. This property should be defined as binding property with
the getter and setter methods for the value.

The program adds the columns into the TableView (lines 49 and 50), adds the TableView
in a pane (line 53), and places the pane in the scene (line 54). Note line 31 can be simplified
using the following code:

new PropertyValueFactory<>("country");

From this example, you see how to display data in a table using the TableView and TableCol-
umn classes. The frequently used properties and methods for the TableView and TableColumn
classes are given in Figures 31.32 and 31.33.

M31_LIAN0182_11_SE_C31.indd 30 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.10 TableView 31-31

Figure 31.33 You can add subcolumns in a column.

You can create nested columns. For example, the following code creates two subcolumns under
Location, as shown in Figures 31.33.

TableColumn locationColumn = new TableColumn("Location");
locationColumn.getColumns().addAll(new TableColumn("latitude"),
 new TableColumn("longitude"));

Figure 31.31 TableView displays a table.

The getter and setter methods for property values
and a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

javafx.scene.control.Control

javafx.scene.control.TableView<S>

-editable: BooleanProperty

-items:
 ObjectProperty<ObservableList<S>>
-placeholder: ObjectProperty<Node>
-selectionModel: ObjectProperty<
 TableViewSelectionModel<S>>

Specifies whether this TableView is editable. For a cell to be
editable, TableView, TableColumn, and TableCell for
the cell should all be true.

The data model for the TableView.

This Node is shown when table has no contents.
Specifies single or multiple selections.

Creates a default TableView with no content.

Creates a default TableView with the specified content.

+TableView()

+TableView(items: ObservableList<S>)

Figure 31.32 TableColumn defines a column in the TableView.

The getter and setter methods for property values
and a getter for property itself are provided in the class, but
omitted in the UML diagram for brevity.

java.lang.Object

javafx.scene.control.TableColumn<S,T>

-editable: BooleanProperty

-cellValueFactory:

 ObjectProperty<Callback<TableColumn.

 CellDataFeatures<S,T>,ObservableValue

 <T>>>

-graphic: ObjectProperty<Node>

-id: StringProperty

-resizable: BooleanProperty

-sortable: BooleanProperty

-text: StringProperty

-style: StringProperty

-visible: BooleanProperty

Specifies whether this TableColumn allows editing.

The cell value factory to specify how to populate all cells within a
single column.

The graphic for this TableColumn.

The id for this TableColumn.

Indicates whether the column is resizable.

Indicates whether the column is sortable.

The text in the table column header.

Specifies the CSS style for the column.

Specifies whether the column is visible (default: true).

Creates a default TableColumn.

Creates a TableView with the specified header text.

+TableColumn()

+TableColumn(text: String)

M31_LIAN0182_11_SE_C31.indd 31 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-32 Chapter 31 Advanced JavaFX and FXML

The TableView data model is an observable list. When data is changed, the change is auto-
matically shown in the table. Listing 31.14 gives an example that lets the user add new rows
to the table.

Listing 31.14 AddNewRowDemo.java
 1 import javafx.application.Application;
 2 import javafx.beans.property.SimpleBooleanProperty;
 3 import javafx.beans.property.SimpleDoubleProperty;
 4 import javafx.beans.property.SimpleStringProperty;
 5 import javafx.collections.FXCollections;
 6 import javafx.collections.ObservableList;
 7 import javafx.scene.Scene;
 8 import javafx.scene.control.Button;
 9 import javafx.scene.control.CheckBox;
 10 import javafx.scene.control.Label;
 11 import javafx.scene.control.TableColumn;
 12 import javafx.scene.control.TableView;
 13 import javafx.scene.control.TextField;
 14 import javafx.scene.control.cell.PropertyValueFactory;
 15 import javafx.scene.layout.BorderPane;
 16 import javafx.scene.layout.FlowPane;
 17 import javafx.stage.Stage;
 18
 19 public class AddNewRowDemo extends Application {
 20 @Override // Override the start method in the Application class
 21 public void start(Stage primaryStage) {
 22 TableView<Country> tableView = new TableView<>();
 23 ObservableList<Country> data =
 24 FXCollections.observableArrayList(
 25 new Country("USA", "Washington DC", 280, true),
 26 new Country("Canada", "Ottawa", 32, true),
 27 new Country("United Kingdom", "London", 60, true),
 28 new Country("Germany", "Berlin", 83, true),
 29 new Country("France", "Paris", 60, true));
 30 tableView.setItems(data);
 31
 32 TableColumn countryColumn = new TableColumn("Country");
 33 countryColumn.setMinWidth(100);
 34 countryColumn.setCellValueFactory(
 35 new PropertyValueFactory<Country, String>("country"));
 36
 37 TableColumn capitalColumn = new TableColumn("Capital");
 38 capitalColumn.setMinWidth(100);
 39 capitalColumn.setCellValueFactory(
 40 new PropertyValueFactory<Country, String>("capital"));
 41
 42 TableColumn populationColumn =
 43 new TableColumn("Population (million)");
 44 populationColumn.setMinWidth(100);
 45 populationColumn.setCellValueFactory(
 46 new PropertyValueFactory<Country, Double>("population"));
 47
 48 TableColumn democraticColumn =
 49 new TableColumn("Is Democratic?");
 50 democraticColumn.setMinWidth(100);
 51 democraticColumn.setCellValueFactory(
 52 new PropertyValueFactory<Country, Boolean>("democratic"));
 53
 54 tableView.getColumns().addAll(countryColumn, capitalColumn,

M31_LIAN0182_11_SE_C31.indd 32 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.10 TableView 31-33

 55 populationColumn, democraticColumn);
 56
 57 FlowPane flowPane = new FlowPane(3, 3);
 58 TextField tfCountry = new TextField();
 59 TextField tfCapital = new TextField();
 60 TextField tfPopulation = new TextField();
 61 CheckBox chkDemocratic = new CheckBox("Is democratic?");
 62 Button btAddRow = new Button("Add new row");
 63 tfCountry.setPrefColumnCount(5);
 64 tfCapital.setPrefColumnCount(5);
 65 tfPopulation.setPrefColumnCount(5);
 66 flowPane.getChildren().addAll(new Label("Country: "),
 67 tfCountry, new Label("Capital"), tfCapital,
 68 new Label("Population"), tfPopulation, chkDemocratic,
 69 btAddRow);
 70
 71 btAddRow.setOnAction(e -> {
 72 data.add(new Country(tfCountry.getText(), tfCapital.getText(),
 73 Double.parseDouble(tfPopulation.getText()),
 74 chkDemocratic.isSelected()));
 75 tfCountry.clear();
 76 tfCapital.clear();
 77 tfPopulation.clear();
 78 });
 79
 80 BorderPane pane = new BorderPane();
 81 pane.setCenter(tableView);
 82 pane.setBottom(flowPane);
 83
 84 Scene scene = new Scene(pane, 500, 250);
 85 primaryStage.setTitle("AddNewRowDemo"); // Set the window title
 86 primaryStage.setScene(scene); // Place the scene in the window
 87 primaryStage.show(); // Display the window
 88 }
 89
 90 public static class Country {
 91 private final SimpleStringProperty country;
 92 private final SimpleStringProperty capital;
 93 private final SimpleDoubleProperty population;
 94 private final SimpleBooleanProperty democratic;
 95
 96 private Country(String country, String capital,
 97 double population, boolean democratic) {
 98 this.country = new SimpleStringProperty(country);
 99 this.capital = new SimpleStringProperty(capital);
100 this.population = new SimpleDoubleProperty(population);
101 this.democratic = new SimpleBooleanProperty(democratic);
102 }
103
104 public String getCountry() {
105 return country.get();
106 }
107
108 public void setCountry(String country) {
109 this.country.set(country);
110 }
111
112 public String getCapital() {
113 return capital.get();
114 }

M31_LIAN0182_11_SE_C31.indd 33 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-34 Chapter 31 Advanced JavaFX and FXML

115
116 public void setCapital(String capital) {
117 this.capital.set(capital);
118 }
119
120 public double getPopulation() {
121 return population.get();
122 }
123
124 public void setPopulation(double population) {
125 this.population.set(population);
126 }
127
128 public boolean isDemocratic() {
129 return democratic.get();
130 }
131
132 public void setDemocratic(boolean democratic) {
133 this.democratic.set(democratic);
134 }
135 }
136 }

The program is the same in Listing 31.13 except that a new code is added to let the user enter
a new row (lines 57–82). The user enters the new row from the text fields and a check box and
presses the Add New Row button to add a new row to the data. Since data is an observable list,
the change in data is automatically updated in the table.

As shown in Figure 31.34a, a new country information is entered in the text fields. After
clicking the Add New Row button, the new country is displayed in the table view.

Figure 31.34 Change in the table data model is automatically displayed in the table view.

(a)

(b)

M31_LIAN0182_11_SE_C31.indd 34 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.11 Developing JavaFX Programs Using FXML 31-35

TableView not only displays data, but also allows data to be edited. To enable data editing in
the table, write the code as follows:

1. Set the TableView’s editable to true.

2. Set the column’s cell factory to a text field table cell.

3. Implement the column’s setOnEditCommit method to assign the edited value to the
data model.

Here is the example of enabling editing for the countryColumn.

tableView.setEditable(true);
countryColumn.setCellFactory(TextFieldTableCell.forTableColumn());
countryColumn.setOnEditCommit(
 new EventHandler<CellEditEvent<Country, String>>() {
 @Override
 public void handle(CellEditEvent<Country, String> t) {
 t.getTableView().getItems().get(
 t.getTablePosition().getRow())
 .setCountry(t.getNewValue());
 }
 }
);

 31.10.1 How do you create a table view? How do you create a table column? How do you
add a table column to a table view?

 31.10.2 What is the data type for a TableView’s data model? How do you associate a data
model with a TableView?

 31.10.3 How do you set a cell value factory for a TableColumn?

 31.10.4 How do you set an image in a table column header?

31.11 Developing JavaFX Programs Using FXML
You can create JavaFX user interfaces using FXML scripts.

There are two ways to develop JavaFX applications. One way is to write everything in Java
source code as you have done so far. The other way is to use FXML. FXML is an XML-based
script language for describing the user interface. Using FXML enables you to separate user
interface from the logic of the Java code. JavaFX Scene Builder is a visual design tool for
creating the user interface without manually writing the FXML script. You drag and drop the
UI components to the content pane and set properties for the components in the Inspector. The
Scene Builder automatically generates the FXML scripts for the user interface. This section
demonstrates how to use the Scene Builder to create JavaFX applications.

NOTE
It is important that you first learn how to write the JavaFX code without using FXML
to grasp the fundamentals of JavaFX programming before learning FXML. Once you
understand the basics of JavaFX, it is easy to create JavaFX programs using FXML. For
this reason, FXML is introduced after you have learned the basics of JavaFX programming.

31.11.1 Installing JavaFX Scene Builder
You can use the JavaFX Scene Builder standalone or with an IDE such as NetBeans or Eclipse.
This section demonstrates using the JavaFX Scene Builder with NetBeans. You can download
the latest version of Scene Builder from http://gluonhq.com/open-source/scene-builder/.

Point
Check

Point
Key

M31_LIAN0182_11_SE_C31.indd 35 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-36 Chapter 31 Advanced JavaFX and FXML

31.11.2 Creating a JavaFX FXML Project
To use JavaFX FXML, you need to create a JavaFX FXML in NetBeans. Here are the steps
of creating a JavaFX FXML project:

1. Choose File, New Project to display the New Project dialog box, as shown in Figure 31.35.

2. Choose JavaFX in the Categories and JavaFX FXML Application in the Projects. Click
Next to display the New JavaFX Application dialog box, as shown in Figure 31.36.

3. Enter Calculator as the project name and click Finish to create the project. You will see
the project created as shown in Figure 31.37.

Three files, Calculator.java, FXMLDocument.fxml, and FXMLDocumentController.
java, are created in the project. Their source codes are shown in Listings 31.15, 31.16, and 31.17.
From the perspective of the MVC architecture, these three files correspond to model, view, and
controller. You can define data model in the Calculator.java class. The .fxml file describes the
user interface. The controller file defines the actions for processing the events for the user interface.

Listing 31.15 Calculator.java
 1 package calculator;
 2
 3 import javafx.application.Application;
 4 import javafx.fxml.FXMLLoader;
 5 import javafx.scene.Parent;
 6 import javafx.scene.Scene;
 7 import javafx.stage.Stage;
 8
 9 public class Calculator extends Application {
10 @Override
11 public void start(Stage stage) throws Exception {
12 Parent root =
13 FXMLLoader.load(getClass().getResource("FXMLDocument.fxml"));
14 Scene scene = new Scene(root);
15 stage.setScene(scene);
16 stage.show();
17 }
18
19 /**
20 * @param args the command line arguments
21 */
22 public static void main(String[] args) {
23 launch(args);
24 }
25 }

Listing 31.16 FXMLDocument.fxml
<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane" prefHeight="200" prefWidth="320"
 xmlns:fx="http://javafx.com/fxml/1"

M31_LIAN0182_11_SE_C31.indd 36 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.11 Developing JavaFX Programs Using FXML 31-37

 fx:controller="calculator.FXMLDocumentController">
 <children>
 <Button layoutX="126" layoutY="90" text="Click Me!"
 onAction="#handleButtonAction" fx:id="button" />
 <Label layoutX="126" layoutY="120" minHeight="16" minWidth="69"
 fx:id="label" />
 </children>
</AnchorPane>

Listing 31.17 FXMLDocumentController.java
package calculator;

import java.net.URL;
import java.util.ResourceBundle;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Label;

public class FXMLDocumentController implements Initializable {
 @FXML
 private Label label;

 @FXML
 private void handleButtonAction(ActionEvent event) {
 System.out.println("You clicked me!");
 label.setText("Hello World!");
 }

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 // TODO
 }
}

Figure 31.35 You can choose JavaFX in the Categories and JavaFX FXML Application in
the Project to create a FXML project.

M31_LIAN0182_11_SE_C31.indd 37 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-38 Chapter 31 Advanced JavaFX and FXML

When you create a JavaFX FXML project, NetBeans creates a default .fxml file that contains
the contents for a simple sample user interface. To view the user interface, double-click the
.fxml file to open the Scene Builder, as shown in Figure 31.39. Note NetBeans can automati-
cally detect the Scene Builder after it is installed on your machine.

31.11.3 Creating User Interfaces
We now turn our attention to developing a simple calculator as shown in Figure 31.38. The
Calculator program enables the user to enter numbers and perform addition, subtraction,
 multiplication, and division.

Figure 31.38 The application performs arithmetic operations.

Figure 31.36 You can enter project information in the New JavaFX Application dialog.

Figure 31.37 A FXML project is created.

M31_LIAN0182_11_SE_C31.indd 38 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.11 Developing JavaFX Programs Using FXML 31-39

Figure 31.40 You can open the Library pane by clicking the Library icon and choose View
as List.

Figure 31.39 Double-click the .fxml file to open the Scene Builder.

To start a new user interface, delete the default user interface in the .fxml file from
the content pane, as shown in Figure 31.41. Here are the steps to create a new user
interface:

1. (Optional) On some systems, the components in the Library pane are not visible by
sections. Click the Library icon to open the context menu as shown in Figure 31.40 and
choose View as List.

2. Drag a BorderPane into the user interface and drag an HBox to the center of the
BorderPane and another HBox to the bottom of the BorderPane. Set the alignment
of both HBox to CENTER as shown in Figure 31.42. Set the Spacing property in the
Layout section of the Inspector to 5. When you select a component in the visual layout,
the properties of the component are displayed in the Inspector pane, where you can
set the properties.

M31_LIAN0182_11_SE_C31.indd 39 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-40 Chapter 31 Advanced JavaFX and FXML

3. Drag and drop a Label, a TextField, a Label, a TextField, a Label, and a Tex-
tField and change the label’s text to Number 1, Number 2, and Result, as shown in
Figure 31.43. Set the Pref Column Count property for each text field to 2 in the Layout
section of the Inspector. In the Code section of the Inspector, set the id for the text fields
to tfNumber1, tfNumber2, and tfResult, as shown in Figure 31.44. These ids are
useful to reference the text fields and obtain their values in the controller.

4. Drag and drop four Buttons to the second HBox and set their text property to Add,
Subtract, Multiply, and Divide, as shown in Figure 31.45.

Figure 31.41 The UI is empty after deleting the default button in the pane.

Figure 31.42 A BorderPane is dropped to the UI and an HBox is placed at the bottom of
the BorderPane.

Figure 31.43 The labels and text fields are dropped to the UI.

M31_LIAN0182_11_SE_C31.indd 40 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 31-41

After you create and make changes to the user interface in the content pane, you need to save
the changes by choosing File, Save from the menu bar in the Scene Builder. The .fxml file is
updated and synchronized with the changes in the content pane. You can view the contents in
the .fxml file from NetBeans, as shown in Figure 31.46.

Figure 31.44 Set the appropriate id for the text fields.

Figure 31.45 The buttons are dropped to the HBox.

Figure 31.46 You can view the contents of the FXML file.

M31_LIAN0182_11_SE_C31.indd 41 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-42 Chapter 31 Advanced JavaFX and FXML

31.11.4 Handling Events in the Controller
The .fxml file describes the user interface. You write the code to implement the logic in the
controller file, as shown in Listing 31.18.

Listing 31.18 FXMLDocumentController.java
 1 package calculator;
 2
 3 import javafx.event.ActionEvent;
 4 import javafx.fxml.FXML;
 5 import javafx.scene.control.TextField;
 6
 7 public class FXMLDocumentController {
 8 @FXML
 9 private TextField tfNumber1, tfNumber2, tfResult;
10
11 @FXML
12 private void addButtonAction(ActionEvent event) {
13 tfResult.setText(getResult('+') + "");
14 }
15
16 @FXML
17 private void subtractButtonAction(ActionEvent event) {
18 tfResult.setText(getResult('−') + "");
19 }
20
21 @FXML
22 private void multiplyButtonAction(ActionEvent event) {
23 tfResult.setText(getResult('*') + "");
24 }
25
26 @FXML
27 private void divideButtonAction(ActionEvent event) {
28 tfResult.setText(getResult('/') + "");
29 }
30
31 private double getResult(char op) {
32 double number1 = Double.parseDouble(tfNumber1.getText());
33 double number2 = Double.parseDouble(tfNumber2.getText());
34 switch (op) {
35 case '+': return number1 + number2;
36 case '−': return number1 − number2;
37 case '*': return number1 * number2;
38 case '/': return number1 / number2;
39 }
40 return Double.NaN;
41 }
42 }

The controller class declares three TextFields, tfNumber1, tfNumber2, and tfResult
(line 9). The @FXML annotation denotes that these data fields are linked to the text fields
in the user interface. Recall in the user interface, we set the id for the three text fields as
tfNumber1, tfNumber2, and tfResult.

The codes for handling the events from the buttons are defined in the methods addButton-
Action, subtractButtonAction, multiplyButtonAction, and divideButtonAction
(lines 11–29). The @FXML annotation is used to denote that these methods will be tied to the
button actions in the view.

Through the @FXML annotation, the data fields and methods in the controller are linked
to the components and actions defined in the .fxml file.

M31_LIAN0182_11_SE_C31.indd 42 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31.11 Developing JavaFX Programs Using FXML 31-43

31.11.5 Linking View with Controller
You can now link the actions from the components in the view with the processing methods
in the controller. Here are the steps to accomplish it:

1. Add the following attribute in the <BorderPane> tag for using a controller with the view.

fx:controller="calculator.FXMLDocumentController"

2. Double-click the .fxml file in the project to display the visual layout window. In the
Inspector for the Add button, choose addButtonAction from a list of action process-
ing methods, as shown in Figure 31.47. The complete code for the .fxml file is shown
in Listing 31.19.

Listing 31.19 FXMLDocument.fxml
<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<BorderPane maxHeight="200" maxWidth="600" minHeight="200"
 minWidth="600" prefHeight="400.0" prefWidth="600.0"
 xmlns="http://javafx.com/javafx/8"
 xmlns:fx="http://javafx.com/fxml/1"
 fx:controller="calculator.FXMLDocumentController">
 <bottom>
 <HBox alignment="CENTER" prefHeight="100.0" prefWidth="200.0"
 spacing="5.0" BorderPane.alignment="CENTER">
 <children>
 <Button mnemonicParsing="false"
 onAction="#addButtonAction" text="Add" />
 <Button mnemonicParsing="false"
 onAction="#subtractButtonAction" text="Subtract" />
 <Button mnemonicParsing="false"
 onAction="#multiplyButtonAction" text="Multiply" />
 <Button mnemonicParsing="false"
 onAction="#divideButtonAction" text="Divide" />
 </children>
 </HBox>
 </bottom>
 <center>
 <HBox alignment="CENTER" prefHeight="232.0" prefWidth="572.0"
 spacing="5.0" BorderPane.alignment="CENTER">
 <children>
 <Label text="Number 1" />
 <TextField fx:id="tfNumber1" prefColumnCount="2"
 prefHeight="51.0" prefWidth="74.0" />
 <Label text="Number 2" />
 <TextField fx:id="tfNumber2" prefColumnCount="2"
 prefHeight="51.0" prefWidth="70.0" />
 <Label text="Result" />
 <TextField fx:id="tfResult" prefColumnCount="2" />
 </children>
 </HBox>
 </center>
</BorderPane>

M31_LIAN0182_11_SE_C31.indd 43 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-44 Chapter 31 Advanced JavaFX and FXML

31.11.6 Running the Project
The code in the model is automatically generated as shown in Listing 31.15. This is the main
program that loads the FXML to create the user interface in a Parent object (lines 12 and 13).
The parent object is then added to the scene (line 14). The scene is set to the stage (line 15).
The stage is displayed in line 16.

Figure 31.47 Choosing addButtonAction to generate the code for handling action for the
Add button.

Chapter Summary

1. JavaFX provides the cascading style sheets based on CSS. You can use the
 getStylesheets method to load a style sheet and use the setStyle, setStyleClass,
and setId methods to set JavaFX CSS for nodes.

2. JavaFX provides the QuadCurve, CubicCurve, and Path classes for creating advanced
shapes.

3. JavaFX supports coordinate transformations using translation, rotation, and scaling.

4. You can specify the pattern for a stroke, how the lines are joined in a stroke, the width
of a stroke, and the type of a stroke.

5. You can create menus using the Menu, MenuItem, CheckMenuItem, and
 RadioMenuItem classes.

6. You can create context menus using the ContextMenu class.

7. The SplitPane can be used to display multiple panes horizontally or vertically and
allows the user to adjust the sizes of the panes.

8. The TabPane can be used to display multiple panes with tabs for selecting panes.

9. You can create and display tables using the TableView and TableColumn classes.

10. You can create JavaFX user interfaces using FXML. FXML is XML-based script lan-
guage for describing the user interface. Using FXML enables you to separate user inter-
face from the logic of Java code.

11. JavaFX Scene Builder is a visual tool for creating the user interface without manually
writing the FXML scripts.

M31_LIAN0182_11_SE_C31.indd 44 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 31-45

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCiSeS

Sections 31.2
 31.1 (Use JavaFX CSS) Create a CSS style sheet that defines a class for white fill and

black stroke color and an id for red stroke and green color. Write a program that
displays four circles and uses the style class and id. The sample run of the program
is shown in Figure 31.48a.

Figure 31.49 (a) Five texts are displayed with a random color and a specified font. (b) A path is displayed
inside the circle. (c) Two circles are displayed in an oval.

(a) (b) (c)

Figure 31.48 (a) The border and the color style for the shapes are defined in a style class. (b) Exercise 31.2
 displays a tic-tac-toe board with images using style sheet for border. (c) Three cards are randomly selected.

(a) (b) (c)

 *31.2 (Tic-tac-toe board) Write a program that displays a tic-tac-toe board, as shown
in Figure 31.48b. A cell may be X, O, or empty. What to display at each cell is
randomly decided. The X and O are images in the files x.gif and o.gif. Use the
style sheet for border.

 *31.3 (Display three cards) Write a program that displays three cards randomly selected
from a deck of 52, as shown in Figure 31.48c. The card image files are named
1.png, 2.png, . . ., 52.png and stored in the image/card directory. All the three
cards are distinct and selected randomly. Hint: You can select random cards by stor-
ing the numbers 1–52 to an array, perform a random shuffle using Section 7.2.6,
and use the first three numbers in the array as the file names for the image. Use the
style sheet for border.

Sections 31.3
 31.4 (Color and font) Write a program that displays five texts vertically, as shown in

Figure 31.49a. Set a random color and opacity for each text and set the font of each
text to Times Roman, bold, italic, and 22 pixels.

M31_LIAN0182_11_SE_C31.indd 45 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-46 Chapter 31 Advanced JavaFX and FXML

 *31.5 (Cubic curve) Write a program that creates two shapes: a circle and a path consist-
ing of two cubic curves, as shown in Figure 31.49b.

 *31.6 (Eyes) Write a program that displays two eyes in an oval, as shown in Figure 31.49c.

Sections 31.4
 *31.7 (Translation) Write a program that displays a rectangle with upper-left corner point

at (40, 40), width 50, and height 40. Enter the values in the text fields x and y and
press the Translate button to translate the rectangle to a new location, as shown in
Figure 31.50a.

Figure 31.50 (a) Exercise 31.7 translates coordinates. (b) Exercise 31.8 rotates coordinates. (c) Exercise 31.9
scales coordinates.

(a) (b) (c)

 *31.8 (Rotation) Write a program that displays an ellipse. The ellipse is centered in the
pane with width 60 and height 40. Enter the value in the text field Angle and press
the Rotate button to rotate the ellipse, as shown in Figure 31.50b.

 *31.9 (Scale graphics) Write a program that displays an ellipse. The ellipse is centered
in the pane with width 60 and height 40. Enter the scaling factors in the text fields
and press the Scale button to scale the ellipse, as shown in Figure 31.50c.

 *31.10 (Plot the sine function) Write a program that plots the sine function, as shown in
Figure 31.51a.

Figure 31.51 (a) Exercise 31.10 displays a sine function. (b) Exercise 31.11 displays the
log function.

(a) (b)

 *31.11 (Plot the log function) Write a program that plots the log function, as shown in
Figure 31.51a.

 *31.12 (Plot the n2 function) Write a program that plots the n2 function, as shown in Figure
31.51b 2a.

M31_LIAN0182_11_SE_C31.indd 46 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 31-47

 *31.13 (Plot the log, n, nlogn, and n2 functions) Write a program that plots the log, n, nlogn,
and n2 functions, as shown in Figure 31.52b.

 *31.14 (Scale and rotate graphics) Write a program that enables the user to scale and rotate
the STOP sign, as shown in Figure 31.53. The user can press the UP/DOWN arrow
key to increase/decrease the size and press the RIGHT/LEFT arrow key to rotate
left or right.

Figure 31.52 (a) Exercise 31.13 displays the n2 function. (b) Exercise 31.13 displays
 several functions.

(a) (b)

Figure 31.53 The program can rotate and scale the painting.

Sections 31.5
 *31.15 (Sunshine) Write a program that displays a circle filled with a gradient color to

animate a sun and display light rays coming out from the sun using dashed lines,
as shown in Figure 31.54a.

Figure 31.54 (a) Exercise 31.15 displays the sunshine. (b) Exercise 31.16 displays a
cylinder.

(a) (b)

 *31.16 (Display a cylinder) Write a program that displays a cylinder, as shown in
 Figure 31.54b. Use dashed strokes to draw the dashed arc.

M31_LIAN0182_11_SE_C31.indd 47 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

31-48 Chapter 31 Advanced JavaFX and FXML

Sections 31.6
* 31.17 (Create an investment value calculator) Write a program that calculates the future

value of an investment at a given interest rate for a specified number of years. The
formula for the calculation is as follows:

futureValue = investmentAmount × (1 + monthlyInterestRate)years×12

 Use text fields for interest rate, investment amount, and years. Display the future
amount in a text field when the user clicks the Calculate button or chooses Calcu-
late from the Operation menu (see Figure 31.55). Click the Exit menu to exit the
program.

Figure 31.56 The popup menu contains the commands to perform arithmetic operations.

Figure 31.55 The user enters the investment amount, years, and interest rate to compute
future value.

Sections 31.8
 *31.18 (Use popup menus) Modify Listing 31.9, MenuDemo.java, to create a popup

menu that contains the menus Operations and Exit, as shown in Figure 31.56. The
popup is displayed when you click the right mouse button on the panel that contains
the labels and the text fields.

 *31.19 (Use SplitPane) Create a program that displays four shapes in split panes, as
shown in Figure 31.57a.

Sections 31.9
 *31.20 (Use tab panes) Modify Listing 31.12, TabPaneDemo.java, to add a pane

of radio buttons for specifying the tab placement of the tab pane, as shown in
Figure 31.57b and c.

M31_LIAN0182_11_SE_C31.indd 48 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 31-49

 *31.21 (Use tab panes) Write a program using tab panes for performing integer and rational
number arithmetic as shown in Figure 31.58.

Figure 31.57 (a) Four shapes are displayed in split panes. (b and c) The radio buttons let
you choose the tab placement of the tabbed pane.

(a) (b) (c)

Figure 31.58 A tab pane is used to select panes that perform integer operations and
rational number operations.

Figure 31.59 Clicking the Delete Selected Row button removes the selected row from the
table.

Sections 31.10
 *31.22 (Use table view) Revise Listing 31.14 to add a button to delete the selected row

from the table, as shown in Figure 31.59.

M31_LIAN0182_11_SE_C31.indd 49 5/29/17 7:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To get an overview of multithreading (§32.2).

■■ To develop task classes by implementing the Runnable interface
(§32.3).

■■ To create threads to run tasks using the Thread class (§32.3).

■■ To control threads using the methods in the Thread class (§32.4).

■■ To control animations using threads and use Platform.runLater to
run the code in the application thread (§32.5).

■■ To execute tasks in a thread pool (§32.6).

■■ To use synchronized methods or blocks to synchronize threads to avoid
race conditions (§32.7).

■■ To synchronize threads using locks (§32.8).

■■ To facilitate thread communications using conditions on locks (§§32.9
and 32.10).

■■ To use blocking queues (ArrayBlockingQueue, LinkedBlocking-
Queue, and PriorityBlockingQueue) to synchronize access to a
queue (§32.11).

■■ To restrict the number of concurrent accesses to a shared resource using
semaphores (§32.12).

■■ To use the resource-ordering technique to avoid deadlocks (§32.13).

■■ To describe the life cycle of a thread (§32.14).

■■ To create synchronized collections using the static methods in the
 Collections class (§32.15).

■■ To develop parallel programs using the Fork/Join Framework (§32.16).

Multithreading
and Parallel
Programming

CHAPTER

32

M32_LIAN0182_11_SE_C32.indd 1 5/29/17 7:26 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-2 Chapter 32 Multithreading and Parallel Programming

32.1 Introduction
Multithreading enables multiple tasks in a program to be executed concurrently.

One of the powerful features of Java is its built-in support for multithreading—the concurrent
running of multiple tasks within a program. In many programming languages, you have to
invoke system-dependent procedures and functions to implement multithreading. This chapter
introduces the concepts of threads and how multithreading programs can be developed in Java.

32.2 Thread Concepts
A program may consist of many tasks that can run concurrently. A thread is the flow
of execution, from beginning to end, of a task.

A thread provides the mechanism for running a task. With Java, you can launch multiple
threads from a program concurrently. These threads can be executed simultaneously in multi-
processor systems, as shown in Figure 32.1a.

Point
Key

multithreading

Point
Key

thread

task

Figure 32.1 (a) Multiple threads running on multiple CPUs. (b) Multiple threads share a
single CPU.

Thread 1

Thread 3

Thread 2

(a)

Thread 1

Thread 3

Thread 2

(b)

In single-processor systems, as shown in Figure 32.1b, the multiple threads share CPU time,
known as time sharing, and the operating system is responsible for scheduling and allocating
resources to them. This arrangement is practical because most of the time the CPU is idle. It
does nothing, for example, while waiting for the user to enter data.

Multithreading can make your program more responsive and interactive as well as enhance
performance. For example, a good word processor lets you print or save a file while you are
typing. In some cases, multithreaded programs run faster than single-threaded programs even
on single-processor systems. Java provides exceptionally good support for creating and running
threads, and for locking resources to prevent conflicts.

You can create additional threads to run concurrent tasks in the program. In Java, each task
is an instance of the Runnable interface, also called a runnable object. A thread is essentially
an object that facilitates the execution of a task.

 32.2.1 Why is multithreading needed? How can multiple threads run simultaneously in a
single-processor system?

 32.2.2 What is a runnable object? What is a thread?

32.3 Creating Tasks and Threads
A task class must implement the Runnable interface. A task must be run from a
thread.

Tasks are objects. To create tasks, you have to first define a class for tasks, which implements
the Runnable interface. The Runnable interface is rather simple. All it contains is the run()
method. You need to implement this method to tell the system how your thread is going to run.
A template for developing a task class is shown in Figure 32.2a.

time sharing

task

runnable object

thread

Point
Check

Point
Key

Runnable interface

run() method

M32_LIAN0182_11_SE_C32.indd 2 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.3 Creating Tasks and Threads 32-3

Once you have defined a TaskClass, you can create a task using its constructor. For
example,

TaskClass task = new TaskClass(...);

A task must be executed in a thread. The Thread class contains the constructors for creating
threads and many useful methods for controlling threads. To create a thread for a task, use

Thread thread = new Thread(task);

You can then invoke the start() method to tell the JVM that the thread is ready to run, as
follows:

thread.start();

The JVM will execute the task by invoking the task’s run() method. Figure 32.2b outlines
the major steps for creating a task, a thread, and starting the thread.

Listing 32.1 gives a program that creates three tasks and three threads to run them.

■■ The first task prints the letter a 100 times.

■■ The second task prints the letter b 100 times.

■■ The third task prints the integers 1 through 100.

When you run this program, the three threads will share the CPU and take turns printing letters
and numbers on the console. Figure 32.3 shows a sample run of the program.

Thread class
create a task

create a thread

start a thread

Figure 32.2 Define a task class by implementing the Runnable interface.

// Client class
public class Client {
 ...
 public void someMethod() {
 ...
 // Create an instance of TaskClass
 TaskClass task = new TaskClass(...);

 // Create a thread
 Thread thread = new Thread(task);

 // Start a thread
 thread.start();
 ...
 }
 ...
}

// Custom task class
public class TaskClass implements Runnable {
 ...
 public TaskClass(...) {
 ...
 }

 // Implement the run method in Runnable
 public void run() {
 // Tell system how to run custom thread
 ...
 }
 ...
}

TaskClassjava.lang.Runnable

(a) (b)

Figure 32.3 Tasks printA, printB, and print100 are executed simultaneously to
 display the letter a 100 times, the letter b 100 times, and the numbers from 1 to 100.

M32_LIAN0182_11_SE_C32.indd 3 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-4 Chapter 32 Multithreading and Parallel Programming

Listing 32.1 TaskThreadDemo.java

 1 public class TaskThreadDemo {
 2 public static void main(String[] args) {
 3 // Create tasks
 4 Runnable printA = new PrintChar('a', 100);
 5 Runnable printB = new PrintChar('b', 100);
 6 Runnable print100 = new PrintNum(100);
 7
 8 // Create threads
 9 Thread thread1 = new Thread(printA);
10 Thread thread2 = new Thread(printB);
11 Thread thread3 = new Thread(print100);
12
13 // Start threads
14 thread1.start();
15 thread2.start();
16 thread3.start();
17 }
18 }
19
20 // The task for printing a character a specified number of times
21 class PrintChar implements Runnable {
22 private char charToPrint; // The character to print
23 private int times; // The number of times to repeat
24
25 /** Construct a task with a specified character and number of
26 * times to print the character
27 */
28 public PrintChar(char c, int t) {
29 charToPrint = c;
30 times = t;
31 }
32
33 @Override /** Override the run() method to tell the system
34 * what task to perform
35 */
36 public void run() {
37 for (int i = 0; i < times; i++) {
38 System.out.print(charToPrint);
39 }
40 }
41 }
42
43 // The task class for printing numbers from 1 to n for a given n
44 class PrintNum implements Runnable {
45 private int lastNum;
46
47 /** Construct a task for printing 1, 2, ..., n */
48 public PrintNum(int n) {
49 lastNum = n;
50 }
51
52 @Override /** Tell the thread how to run */
53 public void run() {
54 for (int i = 1; i <= lastNum; i++) {
55 System.out.print(" " + i);
56 }
57 }
58 }

create tasks

create threads

start threads

task class

run

task class

run

M32_LIAN0182_11_SE_C32.indd 4 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.3 Creating Tasks and Threads 32-5

The program creates three tasks (lines 4–6). To run them concurrently, three threads are created
(lines 9–11). The start() method (lines 14–16) is invoked to start a thread that causes the
run() method in the task to be executed. When the run() method completes, the thread
terminates.

Because the first two tasks, printA and printB, have similar functionality, they can
be defined in one task class PrintChar (lines 21–41). The PrintChar class implements
 Runnable and overrides the run() method (lines 36–40) with the print-character action. This
class provides a framework for printing any single character a given number of times. The
runnable objects, printA and printB, are instances of the PrintChar class.

The PrintNum class (lines 44–58) implements Runnable and overrides the run() method
(lines 53–57) with the print-number action. This class provides a framework for printing num-
bers from 1 to n, for any integer n. The runnable object print100 is an instance of the class
printNum class.

Note
If you don’t see the effect of these three threads running concurrently, increase the
number of characters to be printed. For example, change line 4 to

Runnable printA = new PrintChar('a', 10000);

Important Note
The run()method in a task specifies how to perform the task. This method is automati-
cally invoked by the JVM. You should not invoke it. Invoking run()directly merely
executes this method in the same thread; no new thread is started.

 32.3.1 How do you define a task class? How do you create a thread for a task?

 32.3.2 What would happen if you replace the start() method with the run() method in
lines 14–16 in Listing 32.1?

effect of concurrency

run() method

Point
Check

print100.start();

printA.start();

printB.start();

Replaced by print100.run();
printA.run();
printB.run();

 32.3.3 What is wrong in the following two programs? Correct the errors.

public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() {

 Test task = new Test();
 new Thread(task).start();
 }

 public void run() {
 System.out.println("test");
 }
}

public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() {
 Thread t = new Thread(this);
 t.start();
 t.start();
 }

 public void run() {
 System.out.println("test");
 }
}

(a) (b)

M32_LIAN0182_11_SE_C32.indd 5 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-6 Chapter 32 Multithreading and Parallel Programming

32.4 The Thread Class
The Thread class contains the constructors for creating threads for tasks and the
methods for controlling threads.

Figure 32.4 shows the class diagram for the Thread class.

Point
Key

Figure 32.4 The Thread class contains the methods for controlling threads.

java.lang.Thread

«interface»
java.lang.Runnable

+Thread(task: Runnable)

+Thread()

+start(): void

+interrupt(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

Creates a Thread for a speci�ed task.

Creates an empty Thread.

Starts the thread that causes the run() method to be invoked by the JVM.

Interrupts this thread.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to �nish.

Puts a thread to sleep for a speci�ed time in milliseconds.

Causes a thread to pause temporarily and allow other threads to execute.

Tests whether the thread is currently running.

+sleep(millis: long): void

+yield(): void

Figure 32.5 Define a thread class by extending the Thread class.

// Client class
public class Client {
 ...
 public void someMethod() {
 ...
 // Create a thread
 CustomThread thread1 = new CustomThread(...);

 // Start a thread
 thread1.start();

 // Create another thread
 CustomThread thread2 = new CustomThread(...);

 // Start a thread
 thread2.start();
 }
 ...
}

// Custom thread class
public class CustomThread extends Thread {
 ...
 public CustomThread(...) {
 ...
 }

 // Override the run method in Runnable
 public void run() {
 // Tell system how to perform this task
 ...
 }
 ...
}

CustomThreadjava.lang.Thread

(a) (b)

...

Note
Since the Thread class implements Runnable, you could define a class that extends
Thread and implements the run method, as shown in Figure 32.5a, then create an
object from the class and invoke its start method in a client program to start the thread,
as shown in Figure 32.5b.separating task from thread

M32_LIAN0182_11_SE_C32.indd 6 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.4 The Thread Class 32-7

This approach is, however, not recommended because it mixes the task and the
 mechanism of running the task. Separating the task from the thread is a preferred design.

Note
The Thread class also contains the stop(), suspend(), and resume() methods.
As of Java 2, these methods were deprecated (or outdated) because they are known to
be inherently unsafe. Instead of using the stop() method, you should assign null to
a Thread variable to indicate that it has stopped.

You can use the yield() method to temporarily release time for other threads. For example,
suppose that you modify the code in the run() method in lines 53–57 for PrintNum in
Listing 32.1 as follows:

public void run() {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 Thread.yield();
 }
}

Every time a number is printed, the thread of the print100 task is yielded to other threads.
The sleep(long millis) method puts the thread to sleep for a specified time in milli-

seconds to allow other threads to execute. For example, suppose that you modify the code in
lines 53–57 in Listing 32.1 as follows:

public void run() {
 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 if (i >= 50) Thread.sleep(1);
 }
 }
 catch (InterruptedException ex) {
 }
}

Every time a number (>= 50) is printed, the thread of the print100 task is put to sleep for
1 millisecond.

The sleep method may throw an InterruptedException, which is a checked exception.
Such an exception may occur when a sleeping thread’s interrupt() method is called. The
interrupt() method is very rarely invoked on a thread, so an Interrupted Exception is
unlikely to occur. But since Java forces you to catch checked exceptions, you have to put it in
a try-catch block. If a sleep method is invoked in a loop, you should wrap the loop in a
try-catch block, as shown in (a) below. If the loop is outside the try-catch block, as
shown in (b), the thread may continue to execute even though it is being interrupted.

deprecated method

yield()

sleep(long)

InterruptedException

public void run() {
 try {
 while (...) {
 ...
 Thread.sleep(1000);
 }
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
}

public void run() {
 while (...) {
 try {
 ...
 Thread.sleep(sleepTime);
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
}

(a) Correct (b) Incorrect

M32_LIAN0182_11_SE_C32.indd 7 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-8 Chapter 32 Multithreading and Parallel Programming

You can use the join() method to force one thread to wait for another thread to finish. For
example, suppose that you modify the code in lines 53–57 in Listing 32.1 as follows:

join()

Thread
print100

Wait for thread4
to �nish

Thread
thread4

thread4 �nished

public void run() {
 Thread thread4 = new Thread(
 new PrintChar('c', 40));
 thread4.start();
 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print (" " + i);
 if (i == 50) thread4.join();
 }
 }
 catch (InterruptedException ex) {
 }
}

thread4.join()

A new thread4 is created and it prints character c 40 times. The numbers from 50 to 100
are printed after thread thread4 is finished.

Java assigns every thread a priority. By default, a thread inherits the priority of the thread
that spawned it. You can increase or decrease the priority of any thread by using the
 setPriority method and you can get the thread’s priority by using the getPriority
method. Priorities are numbers ranging from 1 to 10. The Thread class has the int constants
MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY, representing 1, 5, and 10, respec-
tively. The priority of the main thread is Thread.NORM_PRIORITY.

The JVM always picks the currently runnable thread with the highest priority. A lower
 priority thread can run only when no higher priority threads are running. If all runnable threads
have equal priorities, each is assigned an equal portion of the CPU time in a circular queue.
This is called round-robin scheduling. For example, suppose that you insert the following code
in line 16 in Listing 32.1:

thread3.setPriority(Thread.MAX_PRIORITY);

The thread for the print100 task will be finished first.

Tip
The priority numbers may be changed in a future version of Java. To minimize the impact
of any changes, use the constants in the Thread class to specify thread priorities.

Tip
A thread may never get a chance to run if there is always a higher priority thread running
or a same-priority thread that never yields. This situation is known as contention or
starvation. To avoid contention, the thread with higher priority must periodically invoke
the sleep or yield method to give a thread with a lower or the same priority a chance
to run.

 32.4.1 Which of the following methods are instance methods in java.lang.Thread?
Which method may throw an InterruptedException? Which of them are
 deprecated in Java?

run, start, stop, suspend, resume, sleep, interrupt, yield, join

 32.4.2 If a loop contains a method that throws an InterruptedException, why should
the loop be placed inside a try-catch block?

 32.4.3 How do you set a priority for a thread? What is the default priority?

setPriority(int)

round-robin scheduling

contention or starvation

Point
Check

M32_LIAN0182_11_SE_C32.indd 8 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.5 Animation Using Threads and the Platform.runLater Method 32-9

32.5 Animation Using Threads and the Platform.
runLater Method
You can use a thread to control an animation and run the code in JavaFX GUI thread
using the Platform.runLater method.

The use of a Timeline object to control animations was introduced in Section 15.11, Ani-
mation. Alternatively, you can also use a thread to control animation. Listing 32.2 gives an
example that displays flashing text on a label, as shown in Figure 32.6.

Point
Key

Figure 32.6 The text “Welcome” blinks.

Listing 32.2 FlashText.java

 1 import javafx.application.Application;
 2 import javafx.application.Platform;
 3 import javafx.scene.Scene;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.stage.Stage;
 7
 8 public class FlashText extends Application {
 9 private String text = "";
10
11 @Override // Override the start method in the Application class
12 public void start(Stage primaryStage) {
13 StackPane pane = new StackPane();
14 Label lblText = new Label("Programming is fun");
15 pane.getChildren().add(lblText);
16
17 new Thread(new Runnable() {
18 @Override
19 public void run() {
20 try {
21 while (true) {
22 if (lblText.getText().trim().length() == 0)
23 text = "Welcome";
24 else
25 text = "";
26
27 Platform.runLater(new Runnable() { // Run from JavaFX GUI
28 @Override
29 public void run() {
30 lblText.setText(text);
31 }
32 });
33
34 Thread.sleep(200);
35 }
36 }
37 catch (InterruptedException ex) {
38 }
39 }
40 }).start();
41

create a label
label in a pane

create a thread

run thread

change text

Platform.runLater

update GUI

sleep

M32_LIAN0182_11_SE_C32.indd 9 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-10 Chapter 32 Multithreading and Parallel Programming

42 // Create a scene and place it in the stage
43 Scene scene = new Scene(pane, 200, 50);
44 primaryStage.setTitle("FlashText"); // Set the stage title
45 primaryStage.setScene(scene); // Place the scene in the stage
46 primaryStage.show(); // Display the stage
47 }
48 }

The program creates a Runnable object in an anonymous inner class (lines 17–40). This object
is started in line 40 and runs continuously to change the text in the label. It sets a text in the
label if the label is blank (line 23) and sets its text blank (line 25) if the label has a text. The
text is set and unset to simulate a flashing effect.

JavaFX GUI is run from the JavaFX application thread. The flashing control is run from a
separate thread. The code in a nonapplication thread cannot update GUI in the application
thread. To update the text in the label, a new Runnable object is created in lines 27–32. Invok-
ing Platform.runLater(Runnable r) tells the system to run this Runnable object in the
application thread.

The anonymous inner classes in this program can be simplifed using lambda expressions
as follows:

new Thread(() -> { // lambda expression
 try {
 while (true) {
 if (lblText.getText().trim().length() == 0)
 text = "Welcome";
 else
 text = "";

 Platform.runLater(() -> lblText.setText(text)); // lambda exp

 Thread.sleep(200);
 }
 }
 catch (InterruptedException ex) {
 }
}).start();

 32.5.1 What causes the text to flash?

 32.5.2 Is an instance of FlashText a runnable object?

 32.5.3 What is the purpose of using Platform.runLater?

 32.5.4 Can you replace the code in lines 27–32 using the following code?

Platform.runLater(e -> lblText.setText(text));

 32.5.5 What happens if line 34 (Thread.sleep(200)) is not used?

 32.5.6 There is an issue in Listing 16.9, ListViewDemo. If you press the CTRL key and
select Canada, Demark, and China in this order, you will get an ArrayIndex-
OutBoundsException. What is the reason for this error and how do you fix it?
(Thanks to Henri Heimonen of Finland for contributing this question).

32.6 Thread Pools
A thread pool can be used to execute tasks efficiently.

In Section 32.3, Creating Tasks and Threads, you learned how to define a task class by imple-
menting java.lang.Runnable, and how to create a thread to run a task like this:

Runnable task = new TaskClass(...);
new Thread(task).start();

JavaFX application thread

Platform.runLater

Point
Check

Point
Key

M32_LIAN0182_11_SE_C32.indd 10 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.6 Thread Pools 32-11

To create an Executor object, use the static methods in the Executors class, as shown
in Figure 32.8. The newFixedThreadPool(int) method creates a fixed number of threads
in a pool. If a thread completes executing a task, it can be reused to execute another task. If
a thread terminates due to a failure prior to shutdown, a new thread will be created to replace
it if all the threads in the pool are not idle and there are tasks waiting for execution. The
 newCachedThreadPool() method creates a new thread if all the threads in the pool are not
idle and there are tasks waiting for execution. A thread in a cached pool will be terminated if
it has not been used for 60 seconds. A cached pool is efficient for many short tasks.

Figure 32.7 The Executor interface executes threads and the ExecutorService subinterface manages threads.

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean
+isTerminated(): boolean

«interface»
java.util.concurrent.ExecutorService

+execute(Runnable object): void

«interface»
java.util.concurrent.Executor

Executes the runnable task.

Shuts down the executor, but allows the tasks in the executor
 to complete. Once shut down, it cannot accept new tasks.
Shuts down the executor immediately even though there are
 un�nished threads in the pool. Returns a list of un�nished tasks.
Returns true if the executor has been shut down.
Returns true if all tasks in the pool are terminated.

This approach is convenient for a single task execution, but it is not efficient for a large
number of tasks because you have to create a thread for each task. Starting a new thread for
each task could limit throughput and cause poor performance. Using a thread pool is an ideal
way to manage the number of tasks executing concurrently. Java provides the Executor
interface for executing tasks in a thread pool and the ExecutorService interface for man-
aging and controlling tasks. ExecutorService is a subinterface of Executor, as shown
in Figure 32.7.

Figure 32.8 The Executors class provides static methods for creating Executor objects.

Creates a thread pool with a �xed number of threads executing
 concurrently. A thread may be reused to execute another task
 after its current task is �nished.

Creates a thread pool that creates new threads as needed, but
 will reuse previously constructed threads when they are
 available.

java.util.concurrent.Executors

+newFixedThreadPool(numberOfThreads:
 int): ExecutorService

+newCachedThreadPool():
 ExecutorService

Listing 32.3 shows how to rewrite Listing 32.1 using a thread pool.

Listing 32.3 ExecutorDemo.java

 1 import java.util.concurrent.*;
 2
 3 public class ExecutorDemo {

M32_LIAN0182_11_SE_C32.indd 11 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-12 Chapter 32 Multithreading and Parallel Programming

 4 public static void main(String[] args) {
 5 // Create a fixed thread pool with maximum three threads
 6 ExecutorService executor = Executors.newFixedThreadPool(3);
 7
 8 // Submit runnable tasks to the executor
 9 executor.execute(new PrintChar('a', 100));
10 executor.execute(new PrintChar('b', 100));
11 executor.execute(new PrintNum(100));
12
13 // Shut down the executor
14 executor.shutdown();
15 }
16 }

Line 6 creates a thread pool executor with a total of three threads maximum. Classes PrintChar
and PrintNum are defined in Listing 32.1. Line 9 creates a task, new PrintChar('a',
100), and adds it to the pool. Similarly, another two runnable tasks are created and added
to the same pool in lines 10 and 11. The executor creates three threads to execute three
tasks concurrently.

Suppose you replace line 6 with

ExecutorService executor = Executors.newFixedThreadPool(1);

What will happen? The three runnable tasks will be executed sequentially because there is
only one thread in the pool.

Suppose you replace line 6 with

ExecutorService executor = Executors.newCachedThreadPool();

What will happen? New threads will be created for each waiting task, so all the tasks will be
executed concurrently.

The shutdown() method in line 14 tells the executor to shut down. No new tasks can be
accepted, but any existing tasks will continue to finish.

Tip
If you need to create a thread for just one task, use the Thread class. If you need to
create threads for multiple tasks, it is better to use a thread pool.

 32.6.1 What are the benefits of using a thread pool?

 32.6.2 How do you create a thread pool with three fixed threads? How do you submit a
task to a thread pool? How do you know that all the tasks are finished?

32.7 Thread Synchronization
Thread synchronization is to coordinate the execution of the dependent threads.

A shared resource may become corrupted if it is accessed simultaneously by multiple threads.
The following example demonstrates the problem.

Suppose that you create and launch 100 threads, each of which adds a penny to an account.
Define a class named Account to model the account, a class named AddAPennyTask to add
a penny to the account, and a main class that creates and launches threads. The relationships
of these classes are shown in Figure 32.9. The program is given in Listing 32.4.

create executor

submit task

shut down executor

Point
Check

Point
Key

M32_LIAN0182_11_SE_C32.indd 12 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.7 Thread Synchronization 32-13

Figure 32.9 AccountWithoutSync contains an instance of Account and 100 threads of AddAPennyTask.

100 1
AddAPennyTask

+run(): void

AccountWithoutSync

-account: Account

+main(args: String[]): void

1 1
Account

+getBalance(): int
+deposit(amount: int): void

-balance: int

«interface»
java.lang.Runnable

Listing 32.4 AccountWithoutSync.java

 1 import java.util.concurrent.*;
 2
 3 public class AccountWithoutSync {
 4 private static Account account = new Account();
 5
 6 public static void main(String[] args) {
 7 ExecutorService executor = Executors.newCachedThreadPool();
 8
 9 // Create and launch 100 threads
10 for (int i = 0; i < 100; i++) {
11 executor.execute(new AddAPennyTask());
12 }
13
14 executor.shutdown();
15
16 // Wait until all tasks are finished
17 while (!executor.isTerminated()) {
18 }
19
20 System.out.println("What is balance? " + account.getBalance());
21 }
22
23 // A thread for adding a penny to the account
24 private static class AddAPennyTask implements Runnable {
25 public void run() {
26 account.deposit(1);
27 }
28 }
29
30 // An inner class for account
31 private static class Account {
32 private int balance = 0;
33
34 public int getBalance() {
35 return balance;
36 }
37
38 public void deposit(int amount) {
39 int newBalance = balance + amount;
40
41 // This delay is deliberately added to magnify the

create executor

submit task

shut down executor

wait for all tasks to terminate

M32_LIAN0182_11_SE_C32.indd 13 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-14 Chapter 32 Multithreading and Parallel Programming

42 // data-corruption problem and make it easy to see.
43 try {
44 Thread.sleep(5);
45 }
46 catch (InterruptedException ex) {
47 }
48
49 balance = newBalance;
50 }
51 }
52 }

The classes AddAPennyTask and Account in lines 24–51 are inner classes. Line 4 creates
an Account with initial balance 0. Line 11 creates a task to add a penny to the account and
submits the task to the executor. Line 11 is repeated 100 times in lines 10–12. The program
repeatedly checks whether all tasks are completed in lines 17 and 18. The account balance is
displayed in line 20 after all tasks are completed.

The program creates 100 threads executed in a thread pool executor (lines 10–12). The
isTerminated() method (line 17) is used to test whether all the threads in the pool are
terminated.

The balance of the account is initially 0 (line 32). When all the threads are finished, the
 balance should be 100 but the output is unpredictable. As can be seen in Figure 32.10, the
answers are wrong in the sample run. This demonstrates the data-corruption problem that
occurs when all the threads have access to the same data source simultaneously.

Figure 32.10 The AccountWithoutSync program causes data inconsistency.

Lines 39–49 could be replaced by one statement:

balance = balance + amount;

It is highly unlikely, although plausible, that the problem can be replicated using this single
statement. The statements in lines 39–49 are deliberately designed to magnify the data-
corruption problem and make it easy to see. If you run the program several times but still
do not see the problem, increase the sleep time in line 44. This will increase the chances for
showing the problem of data inconsistency.

What, then, caused the error in this program? A possible scenario is shown in Figure 32.11.

Figure 32.11 Task 1 and Task 2 both add 1 to the same balance.

Step Balance Task 1 Task 2

1 0 newBalance = balance + 1;

newBalance = balance + 1;2 0
3 1 balance = newBalance;
4 1 balance = newBalance;

M32_LIAN0182_11_SE_C32.indd 14 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.7 Thread Synchronization 32-15

In Step 1, Task 1 gets the balance from the account. In Step 2, Task 2 gets the same balance
from the account. In Step 3, Task 1 writes a new balance to the account. In Step 4, Task 2
writes a new balance to the account.

The effect of this scenario is that Task 1 does nothing because in Step 4, Task 2 overrides
Task 1’s result. Obviously, the problem is that Task 1 and Task 2 are accessing a common
resource in a way that causes a conflict. This is a common problem, known as a race condi-
tion, in multithreaded programs. A class is said to be thread-safe if an object of the class does
not cause a race condition in the presence of multiple threads. As demonstrated in the preced-
ing example, the Account class is not thread-safe.

32.7.1 The synchronized Keyword
To avoid race conditions, it is necessary to prevent more than one thread from simultaneously
entering a certain part of the program, known as the critical region. The critical region in
 Listing 32.4 is the entire deposit method. You can use the keyword synchronized to
synchronize the method so that only one thread can access the method at a time. There are
several ways to correct the problem in Listing 32.4. One approach is to make Account
thread-safe by adding the keyword synchronized in the deposit method in line 38, as
follows:

public synchronized void deposit(double amount)

A synchronized method acquires a lock before it executes. A lock is a mechanism for exclu-
sive use of a resource. In the case of an instance method, the lock is on the object for which
the method was invoked. In the case of a static method, the lock is on the class. If one thread
invokes a synchronized instance method (respectively, static method) on an object, the lock of
that object (respectively, class) is acquired first, then the method is executed, and finally the
lock is released. Another thread invoking the same method of that object (respectively, class)
is blocked until the lock is released.

With the deposit method synchronized, the preceding scenario cannot happen. If Task 1
enters the method, Task 2 is blocked until Task 1 finishes the method, as shown in Figure 32.12.

race condition
thread-safe

critical region

Figure 32.12 Task 1 and Task 2 are synchronized.

Acquire a lock on the object account

Execute the deposit method

Release the lock

Release the lock

Task 1

Execute the deposit method

Task 2

Wait to acquire the lock

Acquire a lock on the object account

32.7.2 Synchronizing Statements
Invoking a synchronized instance method of an object acquires a lock on the object, and invok-
ing a synchronized static method of a class acquires a lock on the class. A synchronized state-
ment can be used to acquire a lock on any object, not just this object, when executing a block

M32_LIAN0182_11_SE_C32.indd 15 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-16 Chapter 32 Multithreading and Parallel Programming

of the code in a method. This block is referred to as a synchronized block. The general form
of a synchronized statement is as follows:

synchronized (expr) {
 statements;
}

The expression expr must evaluate to an object reference. If the object is already locked by
another thread, the thread is blocked until the lock is released. When a lock is obtained on the
object, the statements in the synchronized block are executed and then the lock is released.

Synchronized statements enable you to synchronize part of the code in a method instead
of the entire method. This increases concurrency. You can make Listing 32.4 thread-safe by
placing the statement in line 26 inside a synchronized block:

synchronized (account) {
 account.deposit(1);
}

Note
Any synchronized instance method can be converted into a synchronized statement.
For example, the following synchronized instance method in (a) is equivalent to (b):

synchronized block

public synchronized void xMethod() {
 // method body
}

public void xMethod() {
 synchronized (this) {
 // method body
 }
}

(a) (b)

 32.7.1 Give some examples of possible resource corruption when running multiple
threads. How do you synchronize conflicting threads?

 32.7.2 Suppose you place the statement in line 26 of Listing 32.4 inside a synchronized
block to avoid race conditions, as follows:

synchronized (this) {
 account.deposit(1);
}

Will it work?

32.8 Synchronization Using Locks
Locks and conditions can be explicitly used to synchronize threads.

Recall that in Listing 32.4, 100 tasks deposit a penny to the same account concurrently, which
causes conflicts. To avoid it, you use the synchronized keyword in the deposit method,
as follows:

public synchronized void deposit(double amount)

A synchronized instance method implicitly acquires a lock on the instance before it executes
the method.

Java enables you to acquire locks explicitly, which give you more control for coordinating
threads. A lock is an instance of the Lock interface, which defines the methods for acquiring and
releasing locks, as shown in Figure 32.13. A lock may also use the newCondition() method
to create any number of Condition objects, which can be used for thread communications.

Point
Check

Point
Key

lock

M32_LIAN0182_11_SE_C32.indd 16 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.8 Synchronization Using Locks 32-17

Figure 32.13 The ReentrantLock class implements the Lock interface to represent a lock.

«interface»

java.util.concurrent.locks.Lock

Acquires the lock.
Releases the lock.
Returns a new Condition instance that is bound to this
Lock instance.

java.util.concurrent.locks.ReentrantLock

+lock(): void
+unlock(): void
+newCondition(): Condition

+ReentrantLock()
+ReentrantLock(fair: boolean)

Same as ReentrantLock(false).
Creates a lock with the given fairness policy. When the

fairness is true, the longest-waiting thread will get the
lock. Otherwise, there is no particular access order.

ReentrantLock is a concrete implementation of Lock for creating mutually exclusive
locks. You can create a lock with the specified fairness policy. True fairness policies guarantee
that the longest waiting thread will obtain the lock first. False fairness policies grant a lock
to a waiting thread arbitrarily. Programs using fair locks accessed by many threads may have
poorer overall performance than those using the default setting, but they have smaller variances
in times to obtain locks and prevent starvation.

Listing 32.5 revises the program in Listing 32.7 to synchronize the account modification
using explicit locks.

Listing 32.5 AccountWithSyncUsingLock.java

 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class AccountWithSyncUsingLock {
 5 private static Account account = new Account();
 6
 7 public static void main(String[] args) {
 8 ExecutorService executor = Executors.newCachedThreadPool();
 9
10 // Create and launch 100 threads
11 for (int i = 0; i < 100; i++) {
12 executor.execute(new AddAPennyTask());
13 }
14
15 executor.shutdown();
16
17 // Wait until all tasks are finished
18 while (!executor.isTerminated()) {
19 }
20
21 System.out.println("What is balance? " + account.getBalance());
22 }
23
24 // A thread for adding a penny to the account
25 public static class AddAPennyTask implements Runnable {
26 public void run() {
27 account.deposit(1);
28 }
29 }
30

fairness policy

package for locks

M32_LIAN0182_11_SE_C32.indd 17 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-18 Chapter 32 Multithreading and Parallel Programming

31 // An inner class for Account
32 public static class Account {
33 private static Lock lock = new ReentrantLock(); // Create a lock
34 private int balance = 0;
35
36 public int getBalance() {
37 return balance;
38 }
39
40 public void deposit(int amount) {
41 lock.lock(); // Acquire the lock
42
43 try {
44 int newBalance = balance + amount;
45
46 // This delay is deliberately added to magnify the
47 // data-corruption problem and make it easy to see.
48 Thread.sleep(5);
49
50 balance = newBalance;
51 }
52 catch (InterruptedException ex) {
53 }
54 finally {
55 lock.unlock(); // Release the lock
56 }
57 }
58 }
59 }

Line 33 creates a lock, line 41 acquires the lock, and line 55 releases the lock.

Tip
It is a good practice to always immediately follow a call to lock() with a try-catch
block and release the lock in the finally clause, as shown in lines 41–56, to ensure
that the lock is always released.

Listing 32.5 can be implemented using a synchronize method for deposit rather than using
a lock. In general, using synchronized methods or statements is simpler than using explicit
locks for mutual exclusion. However, using explicit locks is more intuitive and flexible to
synchronize threads with conditions, as you will see in the next section.

 32.8.1 How do you create a lock object? How do you acquire a lock and release a lock?

32.9 Cooperation among Threads
Conditions on locks can be used to coordinate thread interactions.

Thread synchronization suffices to avoid race conditions by ensuring the mutual exclusion of
multiple threads in the critical region, but sometimes you also need a way for threads to cooper-
ate. Conditions can be used to facilitate communications among threads. A thread can specify
what to do under a certain condition. Conditions are objects created by invoking the newCon-
dition() method on a Lock object. Once a condition is created, you can use its await(),
signal(), and signalAll() methods for thread communications, as shown in Figure 32.14.
The await() method causes the current thread to wait until the condition is signaled. The
signal() method wakes up one waiting thread, and the signalAll() method wakes all
waiting threads.

release the lock

Point
Check

Point
Key

condition

create a lock

acquire the lock

M32_LIAN0182_11_SE_C32.indd 18 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.9 Cooperation among Threads 32-19

Let us use an example to demonstrate thread communications. Suppose you create and
launch two tasks: one that deposits into an account, and one that withdraws from the same
account. The withdraw task has to wait if the amount to be withdrawn is more than the current
balance. Whenever new funds are deposited into the account, the deposit task notifies the
withdraw thread to resume. If the amount is still not enough for a withdrawal, the withdraw
thread has to continue to wait for a new deposit.

To synchronize the operations, use a lock with a condition: newDeposit (i.e., new deposit
added to the account). If the balance is less than the amount to be withdrawn, the withdraw task
will wait for the newDeposit condition. When the deposit task adds money to the account,
the task signals the waiting withdraw task to try again. The interaction between the two tasks
is shown in Figure 32.15.

thread cooperation example

Figure 32.14 The Condition interface defines the methods for performing
synchronization.

«interface»
java.util.concurrent.Condition

+await(): void
+signal(): void
+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.
Wakes up one waiting thread.
Wakes up all waiting threads.

Figure 32.15 The condition newDeposit is used for communications between the two
threads.

while (balance < withdrawAmount)
newDeposit.await();

Withdraw Task

balance – = withdrawAmount

lock.unlock();

Deposit Task

lock.lock();

newDeposit.signalAll();

balance += depositAmount

lock.unlock();

lock.lock();

You create a condition from a Lock object. To use a condition, you have to first obtain a
lock. The await() method causes the thread to wait and automatically releases the lock on the
condition. Once the condition is right, the thread reacquires the lock and continues executing.

Assume the initial balance is 0 and the amount to deposit and withdraw are randomly gen-
erated. Listing 32.6 gives the program. A sample run of the program is shown in Figure 32.16.

Figure 32.16 The withdraw task waits if there are not sufficient funds to withdraw.

M32_LIAN0182_11_SE_C32.indd 19 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-20 Chapter 32 Multithreading and Parallel Programming

Listing 32.6 ThreadCooperation.java

 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class ThreadCooperation {
 5 private static Account account = new Account();
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
10 executor.execute(new DepositTask());
11 executor.execute(new WithdrawTask());
12 executor.shutdown();
13
14 System.out.println("Thread 1\t\tThread 2\t\tBalance");
15 }
16
17 public static class DepositTask implements Runnable {
18 @Override // Keep adding an amount to the account
19 public void run() {
20 try { // Purposely delay it to let the withdraw method proceed
21 while (true) {
22 account.deposit((int)(Math.random() * 10) + 1);
23 Thread.sleep(1000);
24 }
25 }
26 catch (InterruptedException ex) {
27 ex.printStackTrace();
28 }
29 }
30 }
31
32 public static class WithdrawTask implements Runnable {
33 @Override // Keep subtracting an amount from the account
34 public void run() {
35 while (true) {
36 account.withdraw((int)(Math.random() * 10) + 1);
37 }
38 }
39 }
40
41 // An inner class for account
42 private static class Account {
43 // Create a new lock
44 private static Lock lock = new ReentrantLock();
45
46 // Create a condition
47 private static Condition newDeposit = lock.newCondition();
48
49 private int balance = 0;
50
51 public int getBalance() {
52 return balance;
53 }
54
55 public void withdraw(int amount) {
56 lock.lock(); // Acquire the lock
57 try {
58 while (balance < amount) {

create a lock

create a condition

acquire the lock

create two threads

M32_LIAN0182_11_SE_C32.indd 20 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.9 Cooperation among Threads 32-21

59 System.out.println("\t\t\tWait for a deposit");
60 newDeposit.await();
61 }
62
63 balance -= amount;
64 System.out.println("\t\t\tWithdraw " + amount +
65 "\t\t" + getBalance());
66 }
67 catch (InterruptedException ex) {
68 ex.printStackTrace();
69 }
70 finally {
71 lock.unlock(); // Release the lock
72 }
73 }
74
75 public void deposit(int amount) {
76 lock.lock(); // Acquire the lock
77 try {
78 balance += amount;
79 System.out.println("Deposit " + amount +
80 "\t\t\t\t\t" + getBalance());
81
82 // Signal thread waiting on the condition
83 newDeposit.signalAll();
84 }
85 finally {
86 lock.unlock(); // Release the lock
87 }
88 }
89 }
90 }

The example creates a new inner class named Account to model the account with two meth-
ods, deposit(int) and withdraw(int), a class named DepositTask to add an amount
to the balance, a class named WithdrawTask to withdraw an amount from the balance, and a
main class that creates and launches two threads.

The program creates and submits the deposit task (line 10) and the withdraw task (line 11).
The deposit task is purposely put to sleep (line 23) to let the withdraw task run. When there are
not enough funds to withdraw, the withdraw task waits (line 59) for notification of the balance
change from the deposit task (line 83).

A lock is created in line 44. A condition named newDeposit on the lock is created in
line 47. A condition is bound to a lock. Before waiting or signaling the condition, a thread
must first acquire the lock for the condition. The withdraw task acquires the lock in line
56, waits for the newDeposit condition (line 60) when there is not a sufficient amount
to withdraw, and releases the lock in line 71. The deposit task acquires the lock in line 76
and signals all waiting threads (line 83) for the newDeposit condition after a new deposit
is made.

What will happen if you replace the while loop in lines 58–61 with the following if
statement?

if (balance < amount) {
 System.out.println("\t\t\tWait for a deposit");
 newDeposit.await();
}

The deposit task will notify the withdraw task whenever the balance changes. (balance <
amount) may still be true when the withdraw task is awakened. Using the if statement would

acquire the lock

signal threads

release the lock

wait on the condition

release the lock

M32_LIAN0182_11_SE_C32.indd 21 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-22 Chapter 32 Multithreading and Parallel Programming

lead to incorrect withdraw. Using the loop statement, the withdraw task will have a chance to
recheck the condition.

Caution
Once a thread invokes await() on a condition, the thread waits for a signal to resume.
If you forget to call signal() or signalAll() on the condition, the thread will wait
forever.

Caution
A condition is created from a Lock object. To invoke its method (e.g., await(),
 signal(), and signalAll()), you must first own the lock. If you invoke these
methods without acquiring the lock, an IllegalMonitorStateException will be
thrown.

Locks and conditions were introduced in Java 5. Prior to Java 5, thread communications were
programmed using the object’s built-in monitors. Locks and conditions are more powerful and
flexible than the built-in monitor, so will not need to use monitors. However, if you are work-
ing with legacy Java code, you may encounter Java’s built-in monitor.

A monitor is an object with mutual exclusion and synchronization capabilities. Only one
thread can execute a method at a time in the monitor. A thread enters the monitor by acquiring
a lock on it and exits by releasing the lock. Any object can be a monitor. An object becomes a
monitor once a thread locks it. Locking is implemented using the synchronized keyword on
a method or a block. A thread must acquire a lock before executing a synchronized method or
block. A thread can wait in a monitor if the condition is not right for it to continue executing
in the monitor. You can invoke the wait() method on the monitor object to release the lock
so some other thread can get in the monitor and perhaps change the monitor’s state. When
the condition is right, the other thread can invoke the notify() or notifyAll() method
to signal one or all waiting threads to regain the lock and resume execution. The template for
invoking these methods is shown in Figure 32.17.

ever-waiting threads

IllegalMonitorState
Exception

Java’s built-in monitor
monitor

Figure 32.17 The wait(), notify(), and notifyAll() methods coordinate thread communication.

synchronized (anObject) {
try {

// Wait for the condition to become true
while (!condition)

anObject.wait();

// Do something when condition is true
}
catch (InterruptedException ex) {

ex.printStackTrace();
}

}

Task 1

synchronized (anObject) {
// When condition becomes true
anObject.notify(); or anObject.notifyAll();
...

}

Task 2

resume

The wait(), notify(), and notifyAll() methods must be called in a synchronized
method or a synchronized block on the receiving object of these methods. Otherwise, an
IllegalMonitorStateException will occur.

When wait() is invoked, it pauses the thread and simultaneously releases the lock on the
object. When the thread is restarted after being notified, the lock is automatically reacquired.

The wait(), notify(), and notifyAll() methods on an object are analogous to the
await(), signal(), and signalAll() methods on a condition.

M32_LIAN0182_11_SE_C32.indd 22 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.10 Case Study: Producer/Consumer 32-23

 32.9.1 How do you create a condition on a lock? What are the await(), signal(), and
signalAll() methods for?

 32.9.2 What would happen if the while loop in line 58 of Listing 32.6 was changed to an
if statement?

Point
Check

while (balance < amount)
Replaced by

if (balance < amount)

 32.9.3 Why does the following class have a syntax error?

public class Test implements Runnable {
 public static void main(String[] args) {
 new Test();
 }

 public Test() throws InterruptedException {
 Thread thread = new Thread(this);
 thread.sleep(1000);
 }

 public synchronized void run() {
 }
}

 32.9.4 What is a possible cause for IllegalMonitorStateException?

 32.9.5 Can wait(), notify(), and notifyAll() be invoked from any object? What is
the purpose of these methods?

 32.9.6 What is wrong in the following code?

synchronized (object1) {
 try {
 while (!condition) object2.wait();
 }
 catch (InterruptedException ex) {
 }
}

32.10 Case Study: Producer/Consumer
This section gives the classic Consumer/Producer example for demonstrating thread
coordination.

Suppose that you use a buffer to store integers and that the buffer size is limited. The buffer
provides the method write(int) to add an int value to the buffer and the method read()
to read and delete an int value from the buffer. To synchronize the operations, use a lock
with two conditions: notEmpty (i.e., the buffer is not empty) and notFull (i.e., the buffer
is not full). When a task adds an int to the buffer, if the buffer is full, the task will wait for
the notFull condition. When a task reads an int from the buffer, if the buffer is empty, the
task will wait for the notEmpty condition. The interaction between the two tasks is shown in
Figure 32.18.

Listing 32.7 presents the complete program. The program contains the Buffer class (lines
50–101) and two tasks for repeatedly adding and consuming numbers to and from the buffer
(lines 16–47). The write(int) method (lines 62–79) adds an integer to the buffer. The
read() method (lines 81–100) deletes and returns an integer from the buffer.

Point
Key

M32_LIAN0182_11_SE_C32.indd 23 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-24 Chapter 32 Multithreading and Parallel Programming

The buffer is actually a first-in, first-out queue (lines 52 and 53). The conditions notEmpty
and notFull on the lock are created in lines 59 and 60. The conditions are bound to a lock. A
lock must be acquired before a condition can be applied. If you use the wait() and notify()
methods to rewrite this example, you have to designate two objects as monitors.

Listing 32.7 ConsumerProducer.java

 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class ConsumerProducer {
 5 private static Buffer buffer = new Buffer();
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
 10 executor.execute(new ProducerTask());
 11 executor.execute(new ConsumerTask());
 12 executor.shutdown();
 13 }
 14
 15 // A task for adding an int to the buffer
 16 private static class ProducerTask implements Runnable {
 17 public void run() {
 18 try {
 19 int i = 1;
 20 while (true) {
 21 System.out.println("Producer writes " + i);
 22 buffer.write(i++); // Add a value to the buffer
 23 // Put the thread into sleep
 24 Thread.sleep((int)(Math.random() * 10000));
 25 }
 26 }
 27 catch (InterruptedException ex) {
 28 ex.printStackTrace();
 29 }
 30 }
 31 }
 32
 33 // A task for reading and deleting an int from the buffer
 34 private static class ConsumerTask implements Runnable {
 35 public void run() {

create a buffer

create two threads

producer task

consumer task

Figure 32.18 The conditions notFull and notEmpty are used to coordinate task
interactions.

while (count == CAPACITY)
notFull.await();

Task for adding an int

Add an int to the buffer

notEmpty.signal();

while (count == 0)
notEmpty.await();

Task for deleting an int

Delete an int from the buffer

notFull.signal();

M32_LIAN0182_11_SE_C32.indd 24 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.10 Case Study: Producer/Consumer 32-25

 36 try {
 37 while (true) {
 38 System.out.println("\t\t\tConsumer reads " + buffer.read());
 39 // Put the thread into sleep
 40 Thread.sleep((int)(Math.random() * 10000));
 41 }
 42 }
 43 catch (InterruptedException ex) {
 44 ex.printStackTrace();
 45 }
 46 }
 47 }
 48
 49 // An inner class for buffer
 50 private static class Buffer {
 51 private static final int CAPACITY = 1; // buffer size
 52 private java.util.LinkedList<Integer> queue =
 53 new java.util.LinkedList<>();
 54
 55 // Create a new lock
 56 private static Lock lock = new ReentrantLock();
 57
 58 // Create two conditions
 59 private static Condition notEmpty = lock.newCondition();
 60 private static Condition notFull = lock.newCondition();
 61
 62 public void write(int value) {
 63 lock.lock(); // Acquire the lock
 64 try {
 65 while (queue.size() == CAPACITY) {
 66 System.out.println("Wait for notFull condition");
 67 notFull.await();
 68 }
 69
 70 queue.offer(value);
 71 notEmpty.signal(); // Signal notEmpty condition
 72 }
 73 catch (InterruptedException ex) {
 74 ex.printStackTrace();
 75 }
 76 finally {
 77 lock.unlock(); // Release the lock
 78 }
 79 }
 80
 81 public int read() {
 82 int value = 0;
 83 lock.lock(); // Acquire the lock
 84 try {
 85 while (queue.isEmpty()) {
 86 System.out.println("\t\t\tWait for notEmpty condition");
 87 notEmpty.await();
 88 }
 89
 90 value = queue.remove();
 91 notFull.signal(); // Signal notFull condition
 92 }
 93 catch (InterruptedException ex) {
 94 ex.printStackTrace();
 95 }

signal notFull

wait for notEmpty

acquire the lock

release the lock

signal notEmpty

wait for notFull

acquire the lock

create a condition
create a condition

create a lock

M32_LIAN0182_11_SE_C32.indd 25 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-26 Chapter 32 Multithreading and Parallel Programming

 96 finally {
 97 lock.unlock(); // Release the lock
 98 return value;
 99 }
100 }
101 }
102 }

A sample run of the program is shown in Figure 32.19.

release the lock

Figure 32.19 Locks and conditions are used for communications between the Producer and
Consumer threads.

Figure 32.20 BlockingQueue is a subinterface of Queue.

Inserts an element to the tail of the queue.
 Waits if the queue is full.

Retrieves and removes the head of this
 queue. Waits if the queue is empty.

+put(element: E): void

+take(): E

«interface»
java.util.Collection<E>

«interface»
java.util.Queue<E>

«interface»
 java.util.concurrent.BlockingQueue<E>

 32.10.1 Can the read and write methods in the Buffer class be executed concurrently?

 32.10.2 When invoking the read method, what happens if the queue is empty?

 32.10.3 When invoking the write method, what happens if the queue is full?

32.11 Blocking Queues
Java Collections Framework provides ArrayBlockingQueue, LinkedBlocking-
Queue, and PriorityBlockingQueue for supporting blocking queues.

Queues and priority queues were introduced in Section 20.9. A blocking queue causes a thread
to block when you try to add an element to a full queue or to remove an element from an empty
queue. The BlockingQueue interface extends java.util.Queue and provides the synchro-
nized put and take methods for adding an element to the tail of the queue and for removing
an element from the head of the queue, as shown in Figure 32.20.

Point
Check

Point
Key

blocking queue

M32_LIAN0182_11_SE_C32.indd 26 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.11 Blocking Queues 32-27

Note
The put method will never block an unbounded LinkedBlockingQueue or
PriorityBlockingQueue.

Listing 32.8 gives an example of using an ArrayBlockingQueue to simplify the Con-
sumer/Producer example in Listing 32.10. Line 5 creates an ArrayBlockingQueue to store
integers. The Producer thread puts an integer into the queue (line 22) and the Consumer thread
takes an integer from the queue (line 38).

Listing 32.8 ConsumerProducerUsingBlockingQueue.java

 1 import java.util.concurrent.*;
 2
 3 public class ConsumerProducerUsingBlockingQueue {
 4 private static ArrayBlockingQueue<Integer> buffer =
 5 new ArrayBlockingQueue<>(2);
 6
 7 public static void main(String[] args) {
 8 // Create a thread pool with two threads
 9 ExecutorService executor = Executors.newFixedThreadPool(2);
10 executor.execute(new ProducerTask());
11 executor.execute(new ConsumerTask());
12 executor.shutdown();
13 }
14
15 // A task for adding an int to the buffer
16 private static class ProducerTask implements Runnable {
17 public void run() {
18 try {
19 int i = 1;
20 while (true) {
21 System.out.println("Producer writes " + i);
22 buffer.put(i++); // Add any value to the buffer, say, 1
23 // Put the thread into sleep

unbounded queue

create a buffer

create two threads

producer task

put

consumer task

Figure 32.21 ArrayBlockingQueue, LinkedBlockingQueue, and PriorityBlockingQueue are concrete
 blocking queues.

«interface»
java.util.concurrent.BlockingQueue<E>

+ArrayBlockingQueue(capacity: int)

+ArrayBlockingQueue(capacity: int,
 fair: boolean)

ArrayBlockingQueue<E>

+LinkedBlockingQueue()

+LinkedBlockingQueue(capacity: int)

LinkedBlockingQueue<E>

+PriorityBlockingQueue()

+PriorityBlockingQueue(capacity: int)

PriorityBlockingQueue<E>

Three concrete blocking queues—ArrayBlockingQueue, LinkedBlockingQueue, and
PriorityBlockingQueue—are provided in Java, as shown in Figure 32.21. All are in the
java.util.concurrent package. ArrayBlockingQueue implements a blocking queue
using an array. You have to specify a capacity or an optional fairness to construct an Array-
BlockingQueue. LinkedBlockingQueue implements a blocking queue using a linked list.
You can create an unbounded or bounded LinkedBlockingQueue. PriorityBlocking-
Queue is a priority queue. You can create an unbounded or bounded priority queue.

M32_LIAN0182_11_SE_C32.indd 27 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-28 Chapter 32 Multithreading and Parallel Programming

38 System.out.println("\t\t\tConsumer reads " + buffer.take());

Figure 32.22 A limited number of threads can access a shared resource controlled by a
semaphore.

Acquire a permit from a semaphore.
Wait if the permit is not available.

Release the permit to the semaphore.

A thread accessing a shared resource.

Access the resource

semaphore.acquire();

semaphore.release();

39 // Put the thread into sleep
40 Thread.sleep((int)(Math.random() * 10000));
41 }
42 }
43 catch (InterruptedException ex) {
44 ex.printStackTrace();
45 }
46 }
47 }
48 }

In Listing 32.7, you used locks and conditions to synchronize the Producer and Consumer
threads. This program does not use locks and conditions because synchronization is already
implemented in ArrayBlockingQueue.

 32.11.1 What is a blocking queue? What blocking queues are supported in Java?

 32.11.2 What method do you use to add an element to an ArrayBlockingQueue? What
happens if the queue is full?

 32.11.3 What method do you use to retrieve an element from an ArrayBlockingQueue?
What happens if the queue is empty?

32.12 Semaphores
Semaphores can be used to restrict the number of threads that access a shared resource.

In computer science, a semaphore is an object that controls the access to a common resource. Before
accessing the resource, a thread must acquire a permit from the semaphore. After finishing with the
resource, the thread must return the permit back to the semaphore, as shown in Figure 32.22.

take

Consumer task

Point
Check

Point
Key

semaphore

24 Thread.sleep((int)(Math.random() * 10000));
25 }
26 }
27 catch (InterruptedException ex) {
28 ex.printStackTrace();
29 }
30 }
31 }
32
33 // A task for reading and deleting an int from the buffer
34 private static class ConsumerTask implements Runnable {
35 public void run() {
36 try {
37 while (true) {

M32_LIAN0182_11_SE_C32.indd 28 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.12 Semaphores 32-29

A semaphore with just one permit can be used to simulate a mutually exclusive lock.
 Listing 32.9 revises the Account inner class in Listing 32.9 using a semaphore to ensure that
only one thread at a time can access the deposit method.

Listing 32.9 New Account Inner Class

 1 // An inner class for Account
 2 private static class Account {
 3 // Create a semaphore
 4 private static Semaphore semaphore = new Semaphore(1);
 5 private int balance = 0;
 6
 7 public int getBalance() {
 8 return balance;
 9 }
10
11 public void deposit(int amount) {
12 try {
13 semaphore.acquire(); // Acquire a permit
14 int newBalance = balance + amount;
15
16 // This delay is deliberately added to magnify the
17 // data-corruption problem and make it easy to see
18 Thread.sleep(5);
19
20 balance = newBalance;
21 }
22 catch (InterruptedException ex) {
23 }
24 finally {
25 semaphore.release(); // Release a permit
26 }
27 }
28 }

A semaphore with one permit is created in line 4. A thread first acquires a permit when execut-
ing the deposit method in line 13. After the balance is updated, the thread releases the permit
in line 25. It is a good practice to always place the release() method in the finally clause
to ensure that the permit is finally released even in the case of exceptions.

create a semaphore

acquire a permit

release a permit

Figure 32.23 The Semaphore class contains the methods for accessing a semaphore.

java.util.concurrent.Semaphore

+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:
boolean)

+acquire(): void

+release(): void

Creates a semaphore with the speci�ed number of permits. The
fairness policy is false.

Creates a semaphore with the speci�ed number of permits and
the fairness policy.

Acquires a permit from this semaphore. If no permit is
available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

To create a semaphore, you have to specify the number of permits with an optional fair-
ness policy, as shown in Figure 32.23. A task acquires a permit by invoking the semaphore’s
acquire() method and releases the permit by invoking the semaphore’s release()
method. Once a permit is acquired, the total number of available permits in a semaphore is
reduced by 1. Once a permit is released, the total number of available permits in a semaphore
is increased by 1.

M32_LIAN0182_11_SE_C32.indd 29 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-30 Chapter 32 Multithreading and Parallel Programming

 32.12.1 What are the similarities and differences between a lock and a semaphore?

 32.12.2 How do you create a semaphore that allows three concurrent threads? How do
you acquire a semaphore? How do you release a semaphore?

32.13 Avoiding Deadlocks
Deadlocks can be avoided by using a proper resource ordering.

Sometimes two or more threads need to acquire the locks on several shared objects. This could
cause a deadlock, in which each thread has the lock on one of the objects and is waiting for the
lock on the other object. Consider the scenario with two threads and two objects, as shown
in Figure 32.24. Thread 1 has acquired a lock on object1, and Thread 2 has acquired a lock
on object2. Now Thread 1 is waiting for the lock on object2, and Thread 2 for the lock on
object1. Each thread waits for the other to release the lock it needs and until that happens,
neither can continue to run.

Point
Check

Point
Key

deadlock

Figure 32.24 Thread 1 and Thread 2 are deadlocked.

synchronized (object1) {

 // do something here

synchronized (object2) {

// do something here
}

}

Thread 1

synchronized (object2) {

// do something here

synchronized (object1) {
// do something here

 }
}

Thread 2 Step

1
2
3
4
5
6

Wait for Thread 2 to
release the lock on object2

Wait for Thread 1 to
release the lock on object1

Deadlock is easily avoided by using a simple technique known as resource ordering. With
this technique, you assign an order to all the objects whose locks must be acquired and ensure
that each thread acquires the locks in that order. For example in Figure 32.24, suppose the
objects are ordered as object1 and object2. Using the resource-ordering technique, Thread
2 must acquire a lock on object1 first, then on object2. Once Thread 1 acquires a lock on
object1, Thread 2 has to wait for a lock on object1. Thus, Thread 1 will be able to acquire
a lock on object2 and no deadlock will occur.

 32.13.1 What is a deadlock? How can you avoid deadlock?

32.14 Thread States
A thread state indicates the status of thread.

Tasks are executed in threads. Threads can be in one of the five states: New, Ready, Running,
Blocked, or Finished (see Figure 32.25).

When a thread is newly created, it enters the New state. After a thread is started by calling
its start() method, it enters the Ready state. A ready thread is runnable but may not be run-
ning yet. The operating system has to allocate CPU time to it.

When a ready thread begins executing, it enters the Running state. A running thread can
enter the Ready state if its given CPU time expires or its yield() method is called.

resource ordering

Point
Check

Point
Key

M32_LIAN0182_11_SE_C32.indd 30 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.15 Synchronized Collections 32-31

A thread can enter the Blocked state (i.e., become inactive) for several reasons. It may have
invoked the join(), sleep(), or wait() method. It may be waiting for an I/O operation
to finish. A blocked thread may be reactivated when the action inactivating it is reversed.
For example, if a thread has been put to sleep and the sleep time has expired, the thread is
 reactivated and enters the Ready state.

Finally, a thread is Finished if it completes the execution of its run() method.
The isAlive() method is used to find out the state of a thread. It returns true if a thread

is in the Ready, Blocked, or Running state; it returns false if a thread is new and has not
started or if it is finished.

The interrupt() method interrupts a thread in the following way: If a thread is currently
in the Ready or Running state, its interrupted flag is set; if a thread is currently blocked, it
is awakened and enters the Ready state, and a java.lang.InterruptedException is
thrown.

 32.14.1 What is a thread state? Describe the states for a thread.

32.15 Synchronized Collections
Java Collections Framework provides synchronized collections for lists, sets, and maps.

The classes in the Java Collections Framework are not thread-safe; that is, their contents may
become corrupted if they are accessed and updated concurrently by multiple threads. You can
protect the data in a collection by locking the collection or by using synchronized collections.

The Collections class provides six static methods for wrapping a collection into a syn-
chronized version, as shown in Figure 32.26. The collections created using these methods are
called synchronization wrappers.

Point
Check

Point
Key

synchronized collection

synchronization wrapper

Figure 32.25 A thread can be in one of the five states: New, Ready, Running, Blocked, or Finished.

Thread created start()
run()

Wait for target
to �nish

Ready

Running

FinishedNew

Wait for time
out

Wait to be
noti�ed

run() completed
yield(), or
time out

sleep()join() wait()
Target
�nished

SignaledTime out

Blocked

Figure 32.26 You can obtain synchronized collections using the methods in the Collections class.

java.util.Collections

+synchronizedCollection(c: Collection): Collection

+synchronizedList(list: List): List

+synchronizedMap(m: Map): Map

+synchronizedSet(s: Set): Set

+synchronizedSortedMap(s: SortedMap): SortedMap

+synchronizedSortedSet(s: SortedSet): SortedSet

Returns a synchronized collection.

Returns a synchronized list from the speci�ed list.

Returns a synchronized map from the speci�ed map.

Returns a synchronized set from the speci�ed set.

Returns a synchronized sorted map from the speci�ed
 sorted map.
Returns a synchronized sorted set.

M32_LIAN0182_11_SE_C32.indd 31 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-32 Chapter 32 Multithreading and Parallel Programming

Invoking synchronizedCollection(Collection c) returns a new Collection
object, in which all the methods that access and update the original collection c are synchro-
nized. These methods are implemented using the synchronized keyword. For example, the
add method is implemented like this:

public boolean add(E o) {
 synchronized (this) {
 return c.add(o);
 }
}

Synchronized collections can be safely accessed and modified by multiple threads concurrently.

Note
The methods in java.util.Vector, java.util.Stack, and java.util.
Hashtable are already synchronized. These are old classes introduced in JDK 1.0.
Starting with JDK 1.5, you should use java.util.ArrayList to replace Vector,
java.util.LinkedList to replace Stack, and java.util.Map to replace
Hashtable. If synchronization is needed, use a synchronization wrapper.

The synchronization wrapper classes are thread-safe, but the iterator is fail-fast. This means
that if you are using an iterator to traverse a collection while the underlying collection is being
modified by another thread, then the iterator will immediately fail by throwing java.util.
ConcurrentModificationException, which is a subclass of RuntimeException. To
avoid this error, you need to create a synchronized collection object and acquire a lock on the
object when traversing it. For example, to traverse a set, you have to write the code like this:

Set hashSet = Collections.synchronizedSet(new HashSet());

syn chronized (hashSet) { // Must synchronize it
 Iterator iterator = hashSet.iterator();

 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
}

Failure to do so may result in nondeterministic behavior, such as a Con current-
 Modi ficationException.

 32.15.1 What is a synchronized collection? Is ArrayList synchronized? How do you
make it synchronized?

 32.15.2 Explain why an iterator is fail-fast.

32.16 Parallel Programming
The Fork/Join Framework is used for parallel programming in Java.

Section 7.12 introduced the Arrays.sort and Arrays.parallelSort method for sorting
an array. The parallelSort method utilizes multiple processors to reduce sort time.
 Chapter 22 introduced parallel streams for executing stream operations in parallel to speed up
processing using multiple processors. The parallel processing are implemented using the Fork/
Join Framework. This section, introduces the new Fork/Join Framework so you can write own
code for parallel programming.

The Fork/Join Framework is illustrated in Figure 32.27 (the diagram resembles a fork, hence
its name). A problem is divided into nonoverlapping subproblems, which can be solved indepen-
dently in parallel. The solutions to all subproblems are then joined to obtain an overall solution
for the problem. This is the parallel implementation of the divide-and-conquer approach. In JDK
7’s Fork/Join Framework, a fork can be viewed as an independent task that runs on a thread.

fail-fast

Point
Check

Point
Key

JDK 7 feature

Fork/Join Framework

M32_LIAN0182_11_SE_C32.indd 32 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.16 Parallel Programming 32-33

The framework defines a task using the ForkJoinTask class, as shown in Figure 32.28
and executes a task in an instance of ForkJoinPool, as shown in Figure 32.29.

ForkJoinTask

ForkJoinPool

Figure 32.27 The nonoverlapping subproblems are solved in parallel.

Subproblem

Subproblem

Subproblem

Subproblem

Problem

Fork

Solution

Join

Figure 32.28 The ForkJoinTask class defines a task for asynchronous execution.

«interface»
java.util.concurrent.Future<V>

+cancel(interrupt: boolean): boolean
+get(): V

+isDone(): boolean

Attempts to cancel this task.
Waits if needed for the computation to complete and
 returns the result.
Returns true if this task is completed.

java.util.concurrent.ForkJoinTask<V>

+adapt(Runnable task): ForkJoinTask<V>
+fork(): ForkJoinTask<V>
+join(): V
+invoke(): V

+invokeAll(tasks ForkJoinTask<?>…): void

Returns a ForkJoinTask from a runnable task.
Arranges asynchronous execution of the task.
Returns the result of computations when it is done.
Performs the task and awaits for its completion, and returns its
 result.
Forks the given tasks and returns when all tasks are completed.

java.util.concurrent.RecursiveAction<V>

#compute(): void De�nes how task is performed.

java.util.concurrent.RecursiveTask<V>

#compute(): V De�nes how task is performed. Returns the
 value after the task is completed.

Figure 32.29 The ForkJoinPool executes Fork/Join tasks.

«interface»
java.util.concurrent.ExecutorService

java.util.concurrent.ForkJoinPool

+ForkJoinPool()
+ForkJoinPool(parallelism: int)
+invoke(ForkJoinTask<T>): T

Creates a ForkJoinPool with all available processors.
Creates a ForkJoinPool with the speci�ed number of processors.
Performs the task and returns its result upon completion.

See Figure 32.8

M32_LIAN0182_11_SE_C32.indd 33 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-34 Chapter 32 Multithreading and Parallel Programming

ForkJoinTask is the abstract base class for tasks. A ForkJoinTask is a thread-like entity,
but it is much lighter than a normal thread because huge numbers of tasks and subtasks can
be executed by a small number of actual threads in a ForkJoinPool. The tasks are primar-
ily coordinated using fork() and join(). Invoking fork() on a task arranges asynchro-
nous execution and invoking join() waits until the task is completed. The invoke() and
invokeAll(tasks) methods implicitly invoke fork() to execute the task and join() to
wait for the tasks to complete and return the result, if any. Note the static method invokeAll
takes a variable number of ForkJoinTask arguments using the ... syntax, which is intro-
duced in Section 7.9.

The Fork/Join Framework is designed to parallelize divide-and-conquer solutions, which
are naturally recursive. RecursiveAction and RecursiveTask are two subclasses of
 ForkJoinTask. To define a concrete task class, your class should extend RecursiveAction
or RecursiveTask. RecursiveAction is for a task that doesn’t return a value and
 RecursiveTask is for a task that does return a value. Your task class should override the
 compute() method to specify how a task is performed.

We now use a merge sort to demonstrate how to develop parallel programs using the Fork/
Join Framework. The merge sort algorithm (introduced in Section 25.3) divides the array into
two halves and applies a merge sort on each half recursively. After the two halves are sorted,
the algorithm merges them. Listing 32.10 gives a parallel implementation of the merge sort
algorithm and compares its execution time with a sequential sort.

Listing 32.10 ParallelMergeSort.java

 1 import java.util.concurrent.RecursiveAction;
 2 import java.util.concurrent.ForkJoinPool;
 3
 4 public class ParallelMergeSort {
 5 public static void main(String[] args) {
 6 final int SIZE = 7000000;
 7 int[] list1 = new int[SIZE];
 8 int[] list2 = new int[SIZE];
 9
10 for (int i = 0; i < list1.length; i++)
11 list1[i] = list2[i] = (int)(Math.random() * 10000000);
12
13 long startTime = System.currentTimeMillis();
14 parallelMergeSort(list1); // Invoke parallel merge sort
15 long endTime = System.currentTimeMillis();
16 System.out.println("\nParallel time with "
17 + Runtime.getRuntime().availableProcessors() +
18 " processors is " + (endTime - startTime) + " milliseconds");
19
20 startTime = System.currentTimeMillis();
21 MergeSort.mergeSort(list2); // MergeSort is in Listing 23.5
22 endTime = System.currentTimeMillis();
23 System.out.println("\nSequential time is " +
24 (endTime - startTime) + " milliseconds");
25 }
26
27 public static void parallelMergeSort(int[] list) {
28 RecursiveAction mainTask = new SortTask(list);
29 ForkJoinPool pool = new ForkJoinPool();
30 pool.invoke(mainTask);
31 }
32
33 private static class SortTask extends RecursiveAction {
34 private final int THRESHOLD = 500;

RecursiveAction

RecursiveTask

invoke parallel sort

invoke sequential sort

create a ForkJoinTask
create a ForkJoinPool
execute a task

define concrete ForkJoinTask

M32_LIAN0182_11_SE_C32.indd 34 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32.16 Parallel Programming 32-35

35 private int[] list;
36
37 SortTask(int[] list) {
38 this.list = list;
39 }
40
41 @Override
42 protected void compute() {
43 if (list.length < THRESHOLD)
44 java.util.Arrays.sort(list);
45 else {
46 // Obtain the first half
47 int[] firstHalf = new int[list.length / 2];
48 System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
49
50 // Obtain the second half
51 int secondHalfLength = list.length - list.length / 2;
52 int[] secondHalf = new int[secondHalfLength];
53 System.arraycopy(list, list.length / 2,
54 secondHalf, 0, secondHalfLength);
55
56 // Recursively sort the two halves
57 invokeAll(new SortTask(firstHalf),
58 new SortTask(secondHalf));
59
60 // Merge firstHalf with secondHalf into list
61 MergeSort.merge(firstHalf, secondHalf, list);
62 }
63 }
64 }
65 }

perform the task

sort a small list

split into two parts

solve each part

merge two parts

Parallel time with two processors is 2829 milliseconds

Sequential time is 4751 milliseconds

Since the sort algorithm does not return a value, we define a concrete ForkJoinTask class
by extending RecursiveAction (lines 33–64). The compute method is overridden to imple-
ment a recursive merge sort (lines 42–63). If the list is small, it is more efficient to be solved
sequentially (line 44). For a large list, it is split into two halves (lines 47–54). The two halves
are sorted concurrently (lines 57 and 58) and then merged (line 61).

The program creates a main ForkJoinTask (line 28), a ForkJoinPool (line 29), and
places the main task for execution in a ForkJoinPool (line 30). The invoke method will
return after the main task is completed.

When executing the main task, the task is split into subtasks, and the subtasks are invoked
using the invokeAll method (lines 57 and 58). The invokeAll method will return after all
the subtasks are completed. Note each subtask is further split into smaller tasks recursively.
Huge numbers of subtasks may be created and executed in the pool. The Fork/Join Framework
automatically executes and coordinates all the tasks efficiently.

The MergeSort class is defined in Listing 23.5. The program invokes MergeSort.merge
to merge two sorted sublists (line 61). The program also invokes MergeSort.mergeSort
(line 21) to sort a list using merge sort sequentially. You can see that the parallel sort is much
faster than the sequential sort.

Note the loop for initializing the list can also be parallelized. However, you should avoid
using Math.random() in the code because it is synchronized and cannot be executed in
parallel (see Programming Exercise 32.12). The parallelMergeSort method only sorts an

M32_LIAN0182_11_SE_C32.indd 35 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-36 Chapter 32 Multithreading and Parallel Programming

array of int values, but you can modify it to become a generic method (see Programming
Exercise 32.13).

In general, a problem can be solved in parallel using the following pattern:

if (the program is small)
 solve it sequentially;
else {
 divide the problem into nonoverlapping subproblems;
 solve the subproblems concurrently;
 combine the results from subproblems to solve the whole problem;
}

Listing 32.11 develops a parallel method that finds the maximal number in a list.

Listing 32.11 ParallelMax.java

 1 import java.util.concurrent.*;
 2
 3 public class ParallelMax {
 4 public static void main(String[] args) {
 5 // Create a list
 6 final int N = 9000000;
 7 int[] list = new int[N];
 8 for (int i = 0; i < list.length; i++)
 9 list[i] = i;
10
11 long startTime = System.currentTimeMillis();
12 System.out.println("\nThe maximal number is " + max(list));
13 long endTime = System.currentTimeMillis();
14 System.out.println("The number of processors is " +
15 Runtime.getRuntime().availableProcessors());
16 System.out.println("Time is " + (endTime − startTime)
17 + " milliseconds");
18 }
19
20 public static int max(int[] list) {
21 RecursiveTask<Integer> task = new MaxTask(list, 0, list.length);
22 ForkJoinPool pool = new ForkJoinPool();
23 return pool.invoke(task);
24 }
25
26 private static class MaxTask extends RecursiveTask<Integer> {
27 private final static int THRESHOLD = 1000;
28 private int[] list;
29 private int low;
30 private int high;
31
32 public MaxTask(int[] list, int low, int high) {
33 this.list = list;
34 this.low = low;
35 this.high = high;
36 }
37
38 @Override
39 public Integer compute() {
40 if (high − low < THRESHOLD) {
41 int max = list[0];
42 for (int i = low; i < high; i++)
43 if (list[i] > max)
44 max = list[i];
45 return new Integer(max);

invoke max

create a ForkJoinTask
create a ForkJoinPool
execute a task

define concrete ForkJoinTask

perform the task

solve a small problem

M32_LIAN0182_11_SE_C32.indd 36 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Chapter Summary 32-37

46 }
47 else {
48 int mid = (low + high) / 2;
49 RecursiveTask<Integer> left = new MaxTask(list, low, mid);
50 RecursiveTask<Integer> right = new MaxTask(list, mid, high);
51
52 right.fork();
53 left.fork();
54 return new Integer(Math.max(left.join().intValue(),
55 right.join().intValue()));
56 }
57 }
58 }
59 }

split into two parts

fork right
fork left
join tasks

The maximal number is 8999999

The number of processors is 2

Time is 44 milliseconds

Since the algorithm returns an integer, we define a task class for fork join by extending
RecursiveTask<Integer> (lines 26–58). The compute method is overridden to return
the max element in a list[low..high] (lines 39–57). If the list is small, it is more
efficient to be solved sequentially (lines 40–46). For a large list, it is split into two halves
(lines 48–50). The tasks left and right find the maximal element in the left half and
right half, respectively. Invoking fork() on the task causes the task to be executed (lines
52 and 53). The join() method awaits for the task to complete and then returns the result
(lines 54 and 55).

 32.16.1 How do you define a ForkJoinTask? What are the differences between
 RecursiveAction and RecursiveTask?

 32.16.2 How do you tell the system to execute a task?

 32.16.3 What method can you use to test if a task has been completed?

 32.16.4 How do you create a ForkJoinPool? How do you place a task into a
ForkJoinPool?

Point
Check

condition 32-18
deadlock 32-30
fail-fast 32-32
fairness policy 32-17
Fork/Join Framework 32-32
lock 32-16
monitor 32-22

multithreading 32-2
race condition 32-15
semaphore 32-28
synchronization wrapper 32-31
synchronized block 32-16
thread 32-2
thread-safe 32-15

Key Terms

ChapTer summary

1. Each task is an instance of the Runnable interface. A thread is an object that facilitates
the execution of a task. You can define a task class by implementing the Runnable
interface and create a thread by wrapping a task using a Thread constructor.

2. After a thread object is created, use the start() method to start a thread, and the
sleep(long) method to put a thread to sleep so other threads get a chance to run.

M32_LIAN0182_11_SE_C32.indd 37 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-38 Chapter 32 Multithreading and Parallel Programming

3. A thread object never directly invokes the run method. The JVM invokes the run
method when it is time to execute the thread. Your class must override the run method
to tell the system what the thread will do when it runs.

4. To prevent threads from corrupting a shared resource, use synchronized methods or
blocks. A synchronized method acquires a lock before it executes. In the case of an
instance method, the lock is on the object for which the method was invoked. In the case
of a static method, the lock is on the class.

5. A synchronized statement can be used to acquire a lock on any object, not just this
object, when executing a block of the code in a method. This block is referred to as a
synchronized block.

6. You can use explicit locks and conditions to facilitate communications among threads,
as well as using the built-in monitor for objects.

7. The blocking queues (ArrayBlockingQueue, LinkedBlockingQueue, and
Priority BlockingQueue) provided in the Java Collections Framework provide auto-
matical synchronization for the access to a queue.

8. You can use semaphores to restrict the number of concurrent accesses to a shared
resource.

9. Deadlock occurs when two or more threads acquire locks on multiple objects and each
has a lock on one object and is waiting for the lock on the other object. The resource-
ordering technique can be used to avoid deadlock.

10. The JDK 7’s Fork/Join Framework is designed for developing parallel programs. You
can define a task class that extends RecursiveAction or RecursiveTask and execute
the tasks concurrently in ForkJoinPool and obtain the overall solution after all tasks
are completed.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

Sections 32.1–32.5
 *32.1 (Revise Listing 32.1) Rewrite Listing 32.1 to display the output in a text area, as

shown in Figure 32.30.

Figure 32.30 The output from three threads is displayed in a text area.

M32_LIAN0182_11_SE_C32.indd 38 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 32-39

 32.2 (Racing cars) Rewrite Programming Exercise 15.29 using a thread to control car
racing. Compare the program with Programming Exercise 15.29 by setting the
delay time to 10 in both the programs. Which one runs the animation faster?

 32.3 (Raise flags) Rewrite Listing 15.13 using a thread to animate a flag being raised.
Compare the program with Listing 15.13 by setting the delay time to 10 in both
programs. Which one runs the animation faster?

Sections 32.8–32.12
 32.4 (Synchronize threads) Write a program that launches 1,000 threads. Each thread

adds 1 to a variable sum that initially is 0. You need to pass sum by reference to
each thread. In order to pass it by reference, define an Integer wrapper object to
hold sum. Run the program with and without synchronization to see its effect.

 32.5 (Display a running fan) Rewrite Programming Exercise 15.28 using a thread to
control the fan animation.

 32.6 (Bouncing balls) Rewrite Listing 15.17, BallPane.java using a thread to animate
bouncing ball movements.

 32.7 (Control a clock) Rewrite Programming Exercise 15.32 using a thread to control
the clock animation.

 32.8 (Account synchronization) Rewrite Listing 32.6, ThreadCooperation.java, using the
object’s wait() and notifyAll() methods.

 32.9 (Demonstrate ConcurrentModificationException) The iterator is fail-fast.
Write a program to demonstrate it by creating two threads that concurrently access
and modify a set. The first thread creates a hash set filled with numbers and adds
a new number to the set every second. The second thread obtains an iterator for
the set and traverses the set back and forth through the iterator every second. You
will receive a ConcurrentModificationException because the underlying
set is being modified in the first thread while the set in the second thread is being
traversed.

 *32.10 (Use synchronized sets) Using synchronization, correct the problem
in the preceding exercise so that the second thread does not throw a
Concurrent ModificationException.

Section 32.15
 *32.11 (Demonstrate deadlock) Write a program that demonstrates deadlock.

Section 32.18
 *32.12 (Parallel array initializer) Implement the following method using the Fork/Join

Framework to assign random values to the list.

public static void parallelAssignValues(double[] list)

Write a test program that creates a list with 9,000,000 elements and invokes
 parallelAssignValues to assign random values to the list. Also implement a
sequential algorithm and compare the execution time of the two. Note if you use
Math.random(), your parallel code execution time will be worse than the sequen-
tial code execution time because Math.random() is synchronized and cannot be
executed in parallel. To fix this problem, create a Random object for assigning
random values to a small list.

M32_LIAN0182_11_SE_C32.indd 39 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-40 Chapter 32 Multithreading and Parallel Programming

 32.13 (Generic parallel merge sort) Revise Listing 32.10, ParallelMergeSort.java, to
define a generic parallelMergeSort method as follows:

public static <E extends Comparable<E>> void
 parallelMergeSort(E[] list)

 *32.14 (Parallel quick sort) Implement the following method in parallel to sort a list using
quick sort (see Listing 23.7):

public static void parallelQuickSort(int[] list)

Write a test program that times the execution time for a list of size 9,000,000 using
this parallel method and a sequential method.

 *32.15 (Parallel sum) Implement the following method using Fork/Join to find the sum of
a list.

public static double parallelSum(double[] list)

Write a test program that finds the sum in a list of 9,000,000 double values.

 *32.16 (Parallel matrix addition) Programming Exercise 8.5 describes how to perform
matrix addition. Suppose you have multiple processors, so you can speed up the
matrix addition. Implement the following method in parallel:

public static double[][] parallelAddMatrix(
 double[][] a, double[][] b)

Write a test program that measures the execution time for adding two 2,000 * 2,000
matrices using the parallel method and sequential method, respectively.

 *32.17 (Parallel matrix multiplication) Programming Exercise 7.6 describes how to
perform matrix multiplication. Suppose that you have multiple processors, so
you can speed up the matrix multiplication. Implement the following method in
parallel:

public static double[][] parallelMultiplyMatrix(
 double[][] a, double[][] b)

Write a test program that measures the execution time for multiplying two
2,000 * 2,000 matrices using the parallel method and sequential method,
respectively.

 *32.18 (Parallel Eight Queens) Revise Listing 22.11, EightQueens.java, to develop a
 parallel algorithm that finds all solutions for the Eight Queens problem. (Hint:
Launch eight subtasks, each of which places the queen in a different column in the
first row.)

Comprehensive
 ***32.19 (Sorting animation) Write an animation for selection sort, insertion sort, and

bubble sort, as shown in Figure 32.31. Create an array of integers 1, 2, . . . , 50.
Shuffle it randomly. Create a pane to display the array in a histogram. You should
invoke each sort method in a separate thread. Each algorithm uses two nested
loops. When the algorithm completes an iteration in the outer loop, put the thread
to sleep for 0.5 seconds and redisplay the array in the histogram. Color the last
bar in the sorted subarray.

M32_LIAN0182_11_SE_C32.indd 40 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 32-41

Figure 32.31 Three sorting algorithms are illustrated in the animation.

 ***32.20 (Sudoku search animation) Modify Programming Exercise 22.21 to display the
intermediate results of the search. Figure 32.32 gives a snapshot of an animation
in progress with number 2 placed in the cell in Figure 32.32a, number 3 placed
in the cell in Figure 32.32b, and number 3 placed in the cell in Figure 32.32c.
The animation displays all the search steps.

Figure 32.32 The intermediate search steps are displayed in the animation for the Sudoku problem.

(a) (b) (c)

M32_LIAN0182_11_SE_C32.indd 41 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

32-42 Chapter 32 Multithreading and Parallel Programming

 Figure 32.33 The intermediate search steps are displayed in the animation for the Eight Queens problem.

 32.21 (Combine colliding bouncing balls) Rewrite Programming Exercise 20.5 using
a thread to animate bouncing ball movements.

 ***32.22 (Eight Queens animation) Modify Listing 22.11, EightQueens.java, to display
the intermediate results of the search. As shown in Figure 32.33, the current row
being searched is highlighted. Every one second, a new state of the chess board
is displayed.

M32_LIAN0182_11_SE_C32.indd 42 5/29/17 7:27 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To explain the terms: TCP, IP, domain name, domain name server,

stream-based communications, and packet-based communications
(§33.2).

■■ To create servers using server sockets (§33.2.1) and clients using client
sockets (§33.2.2).

■■ To implement Java networking programs using stream sockets
(§33.2.3).

■■ To develop an example of a client/server application (§33.2.4).

■■ To obtain Internet addresses using the InetAddress class (§33.3).

■■ To develop servers for multiple clients (§33.4).

■■ To send and receive objects on a network (§33.5).

■■ To develop an interactive tic-tac-toe game played on the Internet
(§33.6).

Networking

CHAPTER

33

M33_LIAN0182_11_SE_C33.indd 1 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-2 Chapter 33 Networking

33.1 Introduction
Computer networking is used to send and receive messages among computers on the Internet.

To browse the Web or send an email, your computer must be connected to the Internet. The
Internet is the global network of millions of computers. Your computer can connect to the
Internet through an Internet Service Provider (ISP) using a dialup, DSL, or cable modem, or
through a local area network (LAN).

When a computer needs to communicate with another computer, it needs to know the other
computer’s address. An Internet Protocol (IP) address uniquely identifies the computer on the
Internet. An IP address consists of four dotted decimal numbers between 0 and 255, such as
130.254.204.33. Since it is not easy to remember so many numbers, they are often mapped
to meaningful names called domain names, such as liang.armstrong.edu. Special servers called
Domain Name Servers (DNS) on the Internet translate host names into IP addresses. When a
computer contacts liang.armstrong.edu, it first asks the DNS to translate this domain name into
a numeric IP address then sends the request using the IP address.

The Internet Protocol is a low-level protocol for delivering data from one computer to
another across the Internet in packets. Two higher-level protocols used in conjunction with the
IP are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP
enables two hosts to establish a connection and exchange streams of data. TCP guarantees
delivery of data and also guarantees that packets will be delivered in the same order in which
they were sent. UDP is a standard, low-overhead, connectionless, host-to-host protocol that is
used over the IP. UDP allows an application program on one computer to send a datagram to
an application program on another computer.

Java supports both stream-based and packet-based communications. Stream-based
 communications use TCP for data transmission, whereas packet-based communications use UDP.
Since TCP can detect lost transmissions and resubmit them, transmissions are lossless and reli-
able. UDP, in contrast, cannot guarantee lossless transmission. Stream-based communications
are used in most areas of Java programming and are the focus of this chapter. Packet-based com-
munications are introduced in Supplement III.P, Networking Using Datagram Protocol.

33.2 Client/Server Computing
Java provides the ServerSocket class for creating a server socket, and the Socket
class for creating a client socket. Two programs on the Internet communicate through
a server socket and a client socket using I/O streams.

Networking is tightly integrated in Java. The Java API provides the classes for creating sockets
to facilitate program communications over the Internet. Sockets are the endpoints of logical
connections between two hosts and can be used to send and receive data. Java treats socket
communications much as it treats I/O operations; thus, programs can read from or write to
sockets as easily as they can read from or write to files.

Network programming usually involves a server and one or more clients. The client sends
requests to the server, and the server responds. The client begins by attempting to establish a
connection to the server. The server can accept or deny the connection. Once a connection is
established, the client and the server communicate through sockets.

The server must be running when a client attempts to connect to the server. The server waits
for a connection request from the client. The statements needed to create sockets on a server
and on a client are shown in Figure 33.1.

33.2.1 Server Sockets
To establish a server, you need to create a server socket and attach it to a port, which is where
the server listens for connections. The port identifies the TCP service on the socket. Port num-
bers range from 0 to 65536, but port numbers 0 to 1024 are reserved for privileged services.

Point
Key

IP address

domain name
domain name server

TCP
UDP

stream-based communication
packet-based communication

Point
Key

socket

server socket

port

M33_LIAN0182_11_SE_C33.indd 2 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.2 Client/Server Computing 33-3

For instance, the email server runs on port 25, and the Web server usually runs on port 80. You
can choose any port number that is not currently used by other programs. The following state-
ment creates a server socket serverSocket:

ServerSocket serverSocket = new ServerSocket(port);

Note
Attempting to create a server socket on a port already in use would cause a java.net.
BindException.

33.2.2 Client Sockets
After a server socket is created, the server can use the following statement to listen for
connections:

Socket socket = serverSocket.accept();

This statement waits until a client connects to the server socket. The client issues the following
statement to request a connection to a server:

Socket socket = new Socket(serverName, port);

This statement opens a socket so that the client program can communicate with the server.
serverName is the server’s Internet host name or IP address. The following statement creates
a socket on the client machine to connect to the host 130.254.204.33 at port 8000:

Socket socket = new Socket("130.254.204.33", 8000);

Alternatively, you can use the domain name to create a socket, as follows:

Socket socket = new Socket("liang.armstrong.edu", 8000);

When you create a socket with a host name, the JVM asks the DNS to translate the host name
into the IP address.

Note
A program can use the host name localhost or the IP address 127.0.0.1 to refer
to the machine on which a client is running.

BindException

connect to client

client socket

use IP address

use domain name

localhost

Figure 33.1 The server creates a server socket and, once a connection to a client is established,
 connects to the client with a client socket.

Server Host

Step 1: Create a server socket on a port, e.g.,
 8000, using the following statement:

 ServerSocket serverSocket = new
 ServerSocket(8000);

Step 2: Create a socket to connect to a client,
 using the following statement:

Socket socket =
 serverSocket.accept();

Client Host

Step 3: A client program uses the following
 statement to connect to the server:

Socket socket = new
 Socket(serverHost, 8000);

I/O Stream

Network

M33_LIAN0182_11_SE_C33.indd 3 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-4 Chapter 33 Networking

Note
The Socket constructor throws a java.net.UnknownHostException if the host
cannot be found.

33.2.3 Data Transmission through Sockets
After the server accepts the connection, the communication between the server and the client
is conducted in the same way as for I/O streams. The statements needed to create the streams
and to exchange data between them are shown in Figure 33.2.

UnknownHostException

Figure 33.2 The server and client exchange data through I/O streams on top of the socket.

int port = 8000; int port = 8000;

Connection
Request

I/O
Streams

Server Client

DataInputStream in;
DataOutputStream out;
ServerSocket server;
Socket socket;

server = new ServerSocket(port);
socket = server.accept();
in = new DataInputStream
 (socket.getInputStream());
out = new DataOutputStream
 (socket.getOutputStream());
System.out.println(in.readDouble());
out.writeDouble(aNumber);

String host = "localhost"
DataInputStream in;
DataOutputStream out;
Socket socket;

socket = new Socket(host, port);
in = new DataInputStream
 (socket.getInputStream());
out = new DataOutputStream
 (socket.getOutputStream());

System.out.println(in.readDouble());
out.writeDouble(aNumber);

To get an input stream and an output stream, use the getInputStream() and
 getOutputStream() methods on a socket object. For example, the following statements
create an InputStream stream called input and an OutputStream stream called output
from a socket:

InputStream input = socket.getInputStream();
OutputStream output = socket.getOutputStream();

The InputStream and OutputStream streams are used to read or write bytes. You can use
DataInputStream, DataOutputStream, BufferedReader, and PrintWriter to wrap on
the InputStream and OutputStream to read or write data, such as int, double, or String.
The following statements, for instance, create the DataInputStream stream input and the
DataOutputstream output to read and write primitive data values:

DataInputStream input = new DataInputStream
 (socket.getInputStream());
DataOutputStream output = new DataOutputStream
 (socket.getOutputStream());

The server can use input.readDouble() to receive a double value from the client, and
output.writeDouble(d) to send the double value d to the client.

Tip
Recall that binary I/O is more efficient than text I/O because text I/O requires encoding
and decoding. Therefore, it is better to use binary I/O for transmitting data between a
server and a client to improve performance.

M33_LIAN0182_11_SE_C33.indd 4 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.2 Client/Server Computing 33-5

The client sends the radius through a DataOutputStream on the output stream socket, and the
server receives the radius through the DataInputStream on the input stream socket, as shown
in Figure 33.4a. The server computes the area and sends it to the client through a DataOutput-
Stream on the output stream socket, and the client receives the area through a DataInputStream
on the input stream socket, as shown in Figure 33.4b. The server and client programs are given in
Listings 33.1 and 33.2. Figure 33.5 contains a sample run of the server and the client.

Figure 33.3 The client sends the radius to the server; the server computes the area and
sends it to the client.

compute area

Server Client
radius

area

33.2.4 A Client/Server Example
This example presents a client program and a server program. The client sends data to a server.
The server receives the data, uses it to produce a result, and then sends the result back to the
 client. The client displays the result on the console. In this example, the data sent from the client
comprise the radius of a circle, and the result produced by the server is the area of the circle
(see Figure 33.3).

Figure 33.4 (a) The client sends the radius to the server. (b) The server sends the area to the client.

Server
radius

DataInputStream

socket.getInputStream

socket

Network

radius

DataOutputStream

socket.getOutputStream

socket

Client

(a)

Server
area

DataOutputStream

socket.getOutputStream

socket

Network

area

DataInputStream

socket.getInputStream

socket

Client

(b)

Figure 33.5 The client sends the radius to the server. The server receives it, computes the
area, and sends the area to the client.

Listing 33.1 Server.java
 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;

M33_LIAN0182_11_SE_C33.indd 5 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-6 Chapter 33 Networking

 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
10
11 public class Server extends Application {
12 @Override // Override the start method in the Application class
13 public void start(Stage primaryStage) {
14 // Text area for displaying contents
15 TextArea ta = new TextArea();
16
17 // Create a scene and place it in the stage
18 Scene scene = new Scene(new ScrollPane(ta), 450, 200);
19 primaryStage.setTitle("Server"); // Set the stage title
20 primaryStage.setScene(scene); // Place the scene in the stage
21 primaryStage.show(); // Display the stage
22
23 new Thread(() -> {
24 try {
25 // Create a server socket
26 ServerSocket serverSocket = new ServerSocket(8000);
27 Platform.runLater(() ->
28 ta.appendText("Server started at " + new Date() + '\n'));
29
30 // Listen for a connection request
31 Socket socket = serverSocket.accept();
32
33 // Create data input and output streams
34 DataInputStream inputFromClient = new DataInputStream(
35 socket.getInputStream());
36 DataOutputStream outputToClient = new DataOutputStream(
37 socket.getOutputStream());
38
39 while (true) {
40 // Receive radius from the client
41 double radius = inputFromClient.readDouble();
42
43 // Compute area
44 double area = radius * radius * Math.PI;
45
46 // Send area back to the client
47 outputToClient.writeDouble(area);
48
49 Platform.runLater(() -> {
50 ta.appendText("Radius received from client: "
51 + radius + '\n');
52 ta.appendText("Area is: " + area + '\n');
53 });
54 }
55 }
56 catch(IOException ex) {
57 ex.printStackTrace();
58 }
59 }).start();
60 }
61 }

create server UI

server socket

update UI

connect client

input from client

output to client

read radius

write area

update UI

M33_LIAN0182_11_SE_C33.indd 6 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.2 Client/Server Computing 33-7

Listing 33.2 Client.java
 1 import java.io.*;
 2 import java.net.*;
 3 import javafx.application.Application;
 4 import javafx.geometry.Insets;
 5 import javafx.geometry.Pos;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.ScrollPane;
 9 import javafx.scene.control.TextArea;
10 import javafx.scene.control.TextField;
11 import javafx.scene.layout.BorderPane;
12 import javafx.stage.Stage;
13
14 public class Client extends Application {
15 // IO streams
16 DataOutputStream toServer = null;
17 DataInputStream fromServer = null;
18
19 @Override // Override the start method in the Application class
20 public void start(Stage primaryStage) {
21 // Panel p to hold the label and text field
22 BorderPane paneForTextField = new BorderPane();
23 paneForTextField.setPadding(new Insets(5, 5, 5, 5));
24 paneForTextField.setStyle("-fx-border-color: green");
25 paneForTextField.setLeft(new Label("Enter a radius: "));
26
27 TextField tf = new TextField();
28 tf.setAlignment(Pos.BOTTOM_RIGHT);
29 paneForTextField.setCenter(tf);
30
31 BorderPane mainPane = new BorderPane();
32 // Text area to display contents
33 TextArea ta = new TextArea();
34 mainPane.setCenter(new ScrollPane(ta));
35 mainPane.setTop(paneForTextField);
36
37 // Create a scene and place it in the stage
38 Scene scene = new Scene(mainPane, 450, 200);
39 primaryStage.setTitle("Client"); // Set the stage title
40 primaryStage.setScene(scene); // Place the scene in the stage
41 primaryStage.show(); // Display the stage
42
43 tf.setOnAction(e -> {
44 try {
45 // Get the radius from the text field
46 double radius = Double.parseDouble(tf.getText().trim());
47
48 // Send the radius to the server
49 toServer.writeDouble(radius);
50 toServer.flush();
51
52 // Get area from the server
53 double area = fromServer.readDouble();
54
55 // Display to the text area
56 ta.appendText("Radius is " + radius + "\n");
57 ta.appendText("Area received from the server is "
58 + area + '\n');

handle action event

read radius

write radius

read area

create UI

M33_LIAN0182_11_SE_C33.indd 7 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-8 Chapter 33 Networking

59 }
60 catch (IOException ex) {
61 System.err.println(ex);
62 }
63 });
64
65 try {
66 // Create a socket to connect to the server
67 Socket socket = new Socket("localhost", 8000);
68 // Socket socket = new Socket("130.254.204.36", 8000);
69 // Socket socket = new Socket("drake.Armstrong.edu", 8000);
70
71 // Create an input stream to receive data from the server
72 fromServer = new DataInputStream(socket.getInputStream());
73
74 // Create an output stream to send data to the server
75 toServer = new DataOutputStream(socket.getOutputStream());
76 }
77 catch (IOException ex) {
78 ta.appendText(ex.toString() + '\n');
79 }
80 }
81 }

You start the server program first then start the client program. In the client program, enter a
radius in the text field and press Enter to send the radius to the server. The server computes
the area and sends it back to the client. This process is repeated until one of the two programs
terminates.

The networking classes are in the package java.net. You should import this package
when writing Java network programs.

The Server class creates a ServerSocket serverSocket and attaches it to port 8000
using this statement (line 26 in Server.java):

ServerSocket serverSocket = new ServerSocket(8000);

The server then starts to listen for connection requests, using the following statement (line 31
in Server.java):

Socket socket = serverSocket.accept();

The server waits until the client requests a connection. After it is connected, the server
reads the radius from the client through an input stream, computes the area, and sends the
result to the client through an output stream. The ServerSocket accept() method takes
time to execute. It is not appropriate to run this method in the JavaFX application thread.
So, we place it in a separate thread (lines 23–59). The statements for updating GUI needs
to run from the JavaFX application thread using the Platform.runLater method (lines
27–28, 49–53).

The Client class uses the following statement to create a socket that will request a con-
nection to the server on the same machine (localhost) at port 8000 (line 67 in Client.java).

Socket socket = new Socket("localhost", 8000);

If you run the server and the client on different machines, replace localhost with the server
machine’s host name or IP address. In this example, the server and the client are running on
the same machine.

If the server is not running, the client program terminates with a java.net.
ConnectException. After it is connected, the client gets input and output streams—wrapped
by data input and output streams—in order to receive and send data to the server.

request connection

input from server

output to server

M33_LIAN0182_11_SE_C33.indd 8 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.3 The InetAddress Class 33-9

If you receive a java.net.BindException when you start the server, the server port is
currently in use. You need to terminate the process that is using the server port then restart
the server.

Note
When you create a server socket, you have to specify a port (e.g., 8000) for the socket.
When a client connects to the server (line 67 in Client.java), a socket is created on the
client. This socket has its own local port. This port number (e.g., 2047) is automatically
chosen by the JVM, as shown in Figure 33.6.

client socket port

Figure 33.6 The JVM automatically chooses an available port to create a socket for
the client.

Server 0

socket

Client

port number

1

.

.

.

8000
.
.
.

0
1

.

.

.
2047

.

.

.

socket

To see the local port on the client, insert the following statement in line 70 in
 Client.java.

System.out.println("local port: " + socket.getLocalPort());

 33.2.1 How do you create a server socket? What port numbers can be used? What happens if
a requested port number is already in use? Can a port connect to multiple clients?

 33.2.2 What are the differences between a server socket and a client socket?

 33.2.3 How does a client program initiate a connection?

 33.2.4 How does a server accept a connection?

 33.2.5 How are data transferred between a client and a server?

33.3 The InetAddress Class
The server program can use the InetAddress class to obtain the information about
the IP address and host name for the client.

Occasionally, you would like to know who is connecting to the server. You can use the
 InetAddress class to find the client’s host name and IP address. The InetAddress class
models an IP address. You can use the following statement in the server program to get an
instance of InetAddress on a socket that connects to the client:

InetAddress inetAddress = socket.getInetAddress();

Next, you can display the client’s host name and IP address, as follows:

System.out.println("Client's host name is " +
 inetAddress.getHostName());

Point
Check

Point
Key

M33_LIAN0182_11_SE_C33.indd 9 5/29/17 7:41 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-10 Chapter 33 Networking

System.out.println("Client's IP Address is " +
 inetAddress.getHostAddress());

You can also create an instance of InetAddress from a host name or IP address using the
static getByName method. For example, the following statement creates an InetAddress for
the host liang.armstrong.edu.

InetAddress address = InetAddress.getByName("liang.armstrong.edu");

Listing 33.3 gives a program that identifies the host name and IP address of the arguments you
pass in from the command line. Line 7 creates an InetAddress using the getByName method.
Lines 8 and 9 use the getHostName and getHostAddress methods to get the host’s name
and IP address. Figure 33.7 shows a sample run of the program.

Figure 33.7 The program identifies host names and IP addresses.

Listing 33.3 IdentifyHostNameIP.java
 1 import java.net.*;
 2
 3 public class IdentifyHostNameIP {
 4 public static void main(String[] args) {
 5 for (int i = 0; i < args.length; i++) {
 6 try {
 7 InetAddress address = InetAddress.getByName(args[i]);
 8 System.out.print("Host name: " + address.getHostName() + " ");
 9 System.out.println("IP address: " + address.getHostAddress());
10 }
11 catch (UnknownHostException ex) {
12 System.err.println("Unknown host or IP address " + args[i]);
13 }
14 }
15 }
16 }

 33.3.1 How do you obtain an instance of InetAddress?

 33.3.2 What methods can you use to get the IP address and hostname from an InetAddress?

33.4 Serving Multiple Clients
A server can serve multiple clients. The connection to each client is handled by one thread.

Multiple clients are quite often connected to a single server at the same time. Typically, a
server runs continuously on a server computer, and clients from all over the Internet can con-
nect to it. You can use threads to handle the server’s multiple clients simultaneously—simply

get an InetAddress
get host name
get host IP

Point
Check

Point
Key

M33_LIAN0182_11_SE_C33.indd 10 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.4 Serving Multiple Clients 33-11

create a thread for each connection. Here is how the server handles the establishment of a
connection:

while (true) {
 Socket socket = serverSocket.accept(); // Connect to a client
 Thread thread = new ThreadClass(socket);
 thread.start();
}

The server socket can have many connections. Each iteration of the while loop creates a new
connection. Whenever a connection is established, a new thread is created to handle commu-
nication between the server and the new client, and this allows multiple connections to run at
the same time.

Listing 33.4 creates a server class that serves multiple clients simultaneously. For each con-
nection, the server starts a new thread. This thread continuously receives input (the radius of a
circle) from clients and sends the results (the area of the circle) back to them (see Figure 33.8).
The client program is the same as in Listing 33.2. A sample run of the server with two clients
is shown in Figure 33.9.

Figure 33.9 The server spawns a thread in order to serve a client.

Figure 33.8 Multithreading enables a server to handle multiple independent clients.

Server

Client n. . .Client 1

A server socket
on a port

A socket for a
client A socket for a

client

Listing 33.4 MultiThreadServer.java
 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;
 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
 10

M33_LIAN0182_11_SE_C33.indd 11 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-12 Chapter 33 Networking

 11 public class MultiThreadServer extends Application {
 12 // Text area for displaying contents
 13 private TextArea ta = new TextArea();
 14
 15 // Number a client
 16 private int clientNo = 0;
 17
 18 @Override // Override the start method in the Application class
 19 public void start(Stage primaryStage) {
 20 // Create a scene and place it in the stage
 21 Scene scene = new Scene(new ScrollPane(ta), 450, 200);
 22 primaryStage.setTitle("MultiThreadServer"); // Set the stage title
 23 primaryStage.setScene(scene); // Place the scene in the stage
 24 primaryStage.show(); // Display the stage
 25
 26 new Thread(() -> {
 27 try {
 28 // Create a server socket
 29 ServerSocket serverSocket = new ServerSocket(8000);
 30 ta.appendText("MultiThreadServer started at "
 31 + new Date() + '\n');
 32
 33 while (true) {
 34 // Listen for a new connection request
 35 Socket socket = serverSocket.accept();
 36
 37 // Increment clientNo
 38 clientNo++;
 39
 40 Platform.runLater(() -> {
 41 // Display the client number
 42 ta.appendText("Starting thread for client " + clientNo +
 43 " at " + new Date() + '\n');
 44
 45 // Find the client's host name, and IP address
 46 InetAddress inetAddress = socket.getInetAddress();
 47 ta.appendText("Client " + clientNo + "'s host name is "
 48 + inetAddress.getHostName() + "\n");
 49 ta.appendText("Client " + clientNo + "'s IP Address is"
 50 + inetAddress.getHostAddress() + "\n");
 51 });
 52
 53 // Create and start a new thread for the connection
 54 new Thread(new HandleAClient(socket)).start();
 55 }
 56 }
 57 catch(IOException ex) {
 58 System.err.println(ex);
 59 }
 60 }).start();
 61 }
 62
 63 // Define the thread class for handling new connection
 64 class HandleAClient implements Runnable {
 65 private Socket socket; // A connected socket
 66
 67 /** Construct a thread */
 68 public HandleAClient(Socket socket) {
 69 this.socket = socket;
 70 }
 71

server socket

connect client

update GUI

network information

create task

start thread

task class

M33_LIAN0182_11_SE_C33.indd 12 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.5 Sending and Receiving Objects 33-13

 72 /** Run a thread */
 73 public void run() {
 74 try {
 75 // Create data input and output streams
 76 DataInputStream inputFromClient = new DataInputStream(
 77 socket.getInputStream());
 78 DataOutputStream outputToClient = new DataOutputStream(
 79 socket.getOutputStream());
 80
 81 // Continuously serve the client
 82 while (true) {
 83 // Receive radius from the client
 84 double radius = inputFromClient.readDouble();
 85
 86 // Compute area
 87 double area = radius * radius * Math.PI;
 88
 89 // Send area back to the client
 90 outputToClient.writeDouble(area);
 91
 92 Platform.runLater(() -> {
 93 ta.appendText("radius received from client: " +
 94 radius + '\n');
 95 ta.appendText("Area found: " + area + '\n');
 96 });
 97 }
 98 }
 99 catch(IOException ex) {
100 ex.printStackTrace();
101 }
102 }
103 }
104 }

The server creates a server socket at port 8000 (line 29) and waits for a connection (line 35).
When a connection with a client is established, the server creates a new thread to handle
the communication (line 54). It then waits for another connection in an infinite while loop
(lines 33–55).

The threads, which run independently of one another, communicate with designated
clients. Each thread creates data input and output streams that receive and send data to a
client.

 33.4.1 How do you make a server serve multiple clients?

33.5 Sending and Receiving Objects
A program can send and receive objects from another program.

In the preceding examples, you learned how to send and receive data of primitive types. You
can also send and receive objects using ObjectOutputStream and ObjectInputStream
on socket streams. To enable passing, the objects must be serializable. The following example
demonstrates how to send and receive objects.

The example consists of three classes: StudentAddress.java (Listing 33.5), StudentClient.java
(Listing 33.6), and StudentServer.java (Listing 33.7). The client program collects student
 information from the client and sends it to a server, as shown in Figure 33.10.

The StudentAddress class contains the student information: name, street, city, state,
and zip. The StudentAddress class implements the Serializable interface. Therefore, a
StudentAddress object can be sent and received using the object output and input streams.

I/O

update GUI

Point
Check

Point
Key

M33_LIAN0182_11_SE_C33.indd 13 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-14 Chapter 33 Networking

Listing 33.5 StudentAddress.java
 1 public class StudentAddress implements java.io.Serializable {
 2 private String name;
 3 private String street;
 4 private String city;
 5 private String state;
 6 private String zip;
 7
 8 public StudentAddress(String name, String street, String city,
 9 String state, String zip) {
10 this.name = name;
11 this.street = street;
12 this.city = city;
13 this.state = state;
14 this.zip = zip;
15 }
16
17 public String getName() {
18 return name;
19 }
20
21 public String getStreet() {
22 return street;
23 }
24
25 public String getCity() {
26 return city;
27 }
28
29 public String getState() {
30 return state;
31 }
32
33 public String getZip() {
34 return zip;
35 }
36 }

The client sends a StudentAddress object through an ObjectOutputStream
on the output stream socket, and the server receives the Student object through the
 ObjectInputStream on the input stream socket, as shown in Figure 33.11. The client
uses the writeObject method in the ObjectOutputStream class to send data about
a student to the server, and the server receives the student’s information using the
 read Object method in the ObjectInputStream class. The server and client programs
are given in Listings 33.6 and 33.7.

serialized

Figure 33.10 The client sends the student information in an object to the server.

M33_LIAN0182_11_SE_C33.indd 14 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.5 Sending and Receiving Objects 33-15

Listing 33.6 StudentClient.java

 1 import java.io.*;
 2 import java.net.*;
 3 import javafx.application.Application;
 4 import javafx.event.ActionEvent;
 5 import javafx.event.EventHandler;
 6 import javafx.geometry.HPos;
 7 import javafx.geometry.Pos;
 8 import javafx.scene.Scene;
 9 import javafx.scene.control.Button;
10 import javafx.scene.control.Label;
11 import javafx.scene.control.TextField;
12 import javafx.scene.layout.GridPane;
13 import javafx.scene.layout.HBox;
14 import javafx.stage.Stage;
15
16 public class StudentClient extends Application {
17 private TextField tfName = new TextField();
18 private TextField tfStreet = new TextField();
19 private TextField tfCity = new TextField();
20 private TextField tfState = new TextField();
21 private TextField tfZip = new TextField();
22
23 // Button for sending a student to the server
24 private Button btRegister = new Button("Register to the Server");
25
26 // Host name or ip
27 String host = "localhost";
28
29 @Override // Override the start method in the Application class
30 public void start(Stage primaryStage) {
31 GridPane pane = new GridPane();
32 pane.add(new Label("Name"), 0, 0);
33 pane.add(tfName, 1, 0);
34 pane.add(new Label("Street"), 0, 1);
35 pane.add(tfStreet, 1, 1);
36 pane.add(new Label("City"), 0, 2);
37

create UI

Figure 33.11 The client sends a StudentAddress object to the server.

Server

student object

in: ObjectInputStream

socket.getInputStream()

socket

Network

student object

out: ObjectOutputStream

in.readObject() out.writeObject(Object)

socket.getOutputStream()

socket

Client

M33_LIAN0182_11_SE_C33.indd 15 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-16 Chapter 33 Networking

38 HBox hBox = new HBox(2);
39 pane.add(hBox, 1, 2);
40 hBox.getChildren().addAll(tfCity, new Label("State"), tfState,
41 new Label("Zip"), tfZip);
42 pane.add(btRegister, 1, 3);
43 GridPane.setHalignment(btRegister, HPos.RIGHT);
44
45 pane.setAlignment(Pos.CENTER);
46 tfName.setPrefColumnCount(15);
47 tfStreet.setPrefColumnCount(15);
48 tfCity.setPrefColumnCount(10);
49 tfState.setPrefColumnCount(2);
50 tfZip.setPrefColumnCount(3);
51
52 btRegister.setOnAction(new ButtonListener());
53
54 // Create a scene and place it in the stage
55 Scene scene = new Scene(pane, 450, 200);
56 primaryStage.setTitle("StudentClient"); // Set the stage title
57 primaryStage.setScene(scene); // Place the scene in the stage
58 primaryStage.show(); // Display the stage
59 }
60
61 /** Handle button action */
62 private class ButtonListener implements EventHandler<ActionEvent> {
63 @Override
64 public void handle(ActionEvent e) {
65 try {
66 // Establish connection with the server
67 Socket socket = new Socket(host, 8000);
68
69 // Create an output stream to the server
70 ObjectOutputStream toServer =
71 new ObjectOutputStream(socket.getOutputStream());
72
73 // Get text field
74 String name = tfName.getText().trim();
75 String street = tfStreet.getText().trim();
76 String city = tfCity.getText().trim();
77 String state = tfState.getText().trim();
78 String zip = tfZip.getText().trim();
79
80 // Create a Student object and send to the server
81 StudentAddress s =
82 new StudentAddress(name, street, city, state, zip);
83 toServer.writeObject(s);
84 }
85 catch (IOException ex) {
86 ex.printStackTrace();
87 }
88 }
89 }
90 }

Listing 33.7 StudentServer.java

 1 import java.io.*;
 2 import java.net.*;
 3
 4 public class StudentServer {

register listener

server socket

output stream

send to server

M33_LIAN0182_11_SE_C33.indd 16 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.5 Sending and Receiving Objects 33-17

 5 private ObjectOutputStream outputToFile;
 6 private ObjectInputStream inputFromClient;
 7
 8 public static void main(String[] args) {
 9 new StudentServer();
10 }
11
12 public StudentServer() {
13 try {
14 // Create a server socket
15 ServerSocket serverSocket = new ServerSocket(8000);
16 System.out.println("Server started ");
17
18 // Create an object output stream
19 outputToFile = new ObjectOutputStream(
20 new FileOutputStream("student.dat", true));
21
22 while (true) {
23 // Listen for a new connection request
24 Socket socket = serverSocket.accept();
25
26 // Create an input stream from the socket
27 inputFromClient =
28 new ObjectInputStream(socket.getInputStream());
29
30 // Read from input
31 Object object = inputFromClient.readObject();
32
33 // Write to the file
34 outputToFile.writeObject(object);
35 System.out.println("A new student object is stored");
36 }
37 }
38 catch(ClassNotFoundException ex) {
39 ex.printStackTrace();
40 }
41 catch(IOException ex) {
42 ex.printStackTrace();
43 }
44 finally {
45 try {
46 inputFromClient.close();
47 outputToFile.close();
48 }
49 catch (Exception ex) {
50 ex.printStackTrace();
51 }
52 }
53 }
54 }

On the client side, when the user clicks the Register to the Server button, the client creates
a socket to connect to the host (line 67), creates an ObjectOutputStream on the output
stream of the socket (lines 70 and 71), and invokes the writeObject method to send the
StudentAddress object to the server through the object output stream (line 83).

On the server side, when a client connects to the server, the server creates an
Object InputStream on the input stream of the socket (lines 27 and 28), invokes the
readObject method to receive the StudentAddress object through the object input
stream (line 31), and writes the object to a file (line 34).

server socket

output to file

connect to client

input stream

get from client

write to file

M33_LIAN0182_11_SE_C33.indd 17 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-18 Chapter 33 Networking

Figure 33.12 The server can create many sessions, each of which facilitates a tic-tac-toe
game for two players.

Server

Player 2

Session n...

Player 1 Player 2Player 1

Session 1

...

 33.5.1 How does a server receive connection from a client? How does a client connect to
a server?

 33.5.2 How do you find the host name of a client program from the server?

 33.5.3 How do you send and receive an object?

33.6 Case Study: Distributed Tic-Tac-Toe Games
This section develops a program that enables two players to play the tic-tac-toe game
on the Internet.

In Section 16.12, Case Study: Developing a Tic-Tac-Toe Game, you developed a program
for a tic-tac-toe game that enables two players to play the game on the same machine. In this
section, you will learn how to develop a distributed tic-tac-toe game using multithreads and
networking with socket streams. A distributed tic-tac-toe game enables users to play on dif-
ferent machines from anywhere on the Internet.

You need to develop a server for multiple clients. The server creates a server socket and
accepts connections from every two players to form a session. Each session is a thread that
communicates with the two players and determines the status of the game. The server can
establish any number of sessions, as shown in Figure 33.12.

For each session, the first client connecting to the server is identified as player 1 with token
X, and the second client connecting is identified as player 2 with token O. The server notifies
the players of their respective tokens. Once two clients are connected to it, the server starts a
thread to facilitate the game between the two players by performing the steps repeatedly, as
shown in Figure 33.13.

Point
Check

Point
Key

The server does not have to be a graphical component, but creating it in a GUI in which
game information can be viewed is user friendly. You can create a scroll pane to hold a text
area in the GUI and display game information in the text area. The server creates a thread to
handle a game session when two players are connected to the server.

The client is responsible for interacting with the players. It creates a user interface with
nine cells and displays the game title and status to the players in the labels. The client class is
very similar to the TicTacToe class presented in the case study in Listing 16.13. However,
the client in this example does not determine the game status (win or draw); it simply passes
the moves to the server and receives the game status from the server.

Based on the foregoing analysis, you can create the following classes:

■■ TicTacToeServer serves all the clients in Listing 33.9.

■■ HandleASession facilitates the game for two players. This class is defined in
Listing 33.9, TicTacToeServer.java.

M33_LIAN0182_11_SE_C33.indd 18 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.6 Case Study: Distributed Tic-Tac-Toe Games 33-19

■■ TicTacToeClient models a player in Listing 33.10.

■■ Cell models a cell in the game. It is an inner class in TicTacToeClient.

■■ TicTacToeConstants is an interface that defines the constants shared by all the
classes in the example in Listing 33.8.

The relationships of these classes are shown in Figure 33.14.

Listing 33.8 TicTacToeConstants.java
 1 public interface TicTacToeConstants {
 2 public static int PLAYER1 = 1; // Indicate player 1
 3 public static int PLAYER2 = 2; // Indicate player 2
 4 public static int PLAYER1_WON = 1; // Indicate player 1 won
 5 public static int PLAYER2_WON = 2; // Indicate player 2 won
 6 public static int DRAW = 3; // Indicate a draw
 7 public static int CONTINUE = 4; // Indicate to continue
 8 }

Listing 33.9 TicTacToeServer.java

 1 import java.io.*;
 2 import java.net.*;

Figure 33.13 The server starts a thread to facilitate communications between the two players.

Player 1

1. Initialize user interface.

2. Request connection to the server

and learn which token to use from the

server.

3. Get the start signal from the server.

4. Wait for the player to mark a cell,

send the cell's row and column index to

the server.

5. Receive status from the server.

6. If WIN, display the winner; if Player 2

wins, receive the last move from

Player 2. Break the loop.

7. If DRAW, display game is over;

break the loop.

8. If CONTINUE, receive Player 2's

selected row and column index and

mark the cell for Player 2.

Server

Create a server socket.

Accept connection from the �rst player and notify

the player who is Player 1 with token X.

Accept connection from the second player and

notify the player who is Player 2 with token O.

Start a thread for the session.

Player 2

1. Initialize user interface.

2. Request connection to the server and

learn which token to use from the server.

3. Receive status from the server.

4. If WIN, display the winner. If Player 1

wins, receive Player 1's last move, and

break the loop.

5. If DRAW, display game is over, and

receive Player 1's last move, and break

the loop.

6. If CONTINUE, receive Player 1's

selected row and index and mark the cell

for Player 1.

7. Wait for the player to move, and send

the selected row and column to the

server.

Handle a session:

1. Tell Player 1 to start.

2. Receive row and column of the selected cell from

Player 1.

3. Determine the game status (WIN, DRAW,

CONTINUE). If Player 1 wins, or draws, send the status

(PLAYER1_WON, DRAW) to both players and send

Player 1's move to Player 2. Exit.

4. If CONTINUE, notify Player 2 to take the turn, and

send Player 1's newly selected row and column index to

Player 2.

5. Receive row and column of the selected cell from

Player 2.

6. If Player 2 wins, send the status (PLAYER2_WON) to

both players, and send Player 2's move to Player 1. Exit.

7. If CONTINUE, send the status, and send Player 2's

newly selected row and column index to Player 1.

M33_LIAN0182_11_SE_C33.indd 19 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-20 Chapter 33 Networking

 3 import java.util.Date;
 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.ScrollPane;
 8 import javafx.scene.control.TextArea;
 9 import javafx.stage.Stage;
 10
 11 public class TicTacToeServer extends Application
 12 implements TicTacToeConstants {
 13 private int sessionNo = 1; // Number a session
 14
 15 @Override // Override the start method in the Application class
 16 public void start(Stage primaryStage) {
 17 TextArea taLog = new TextArea();
 18
 19 // Create a scene and place it in the stage
 20 Scene scene = new Scene(new ScrollPane(taLog), 450, 200);
 21 primaryStage.setTitle("TicTacToeServer"); // Set the stage title
 22 primaryStage.setScene(scene); // Place the scene in the stage
 23 primaryStage.show(); // Display the stage
 24
 25 new Thread(() -> {
 26 try {
 27 // Create a server socket

create UI

Figure 33.14 TicTacToeServer creates an instance of HandleASession for each session of two players.
 TicTacToeClient creates nine cells in the UI.

TicTacToeConstants

Runnable

TicTacToeServer

TicTacToeClient CellJApplet

JFrame

Similar to
Listing 18.10

TicTacToeServer

+PLAYER1 = 1: int
+PLAYER2 = 2: int
+PLAYER1_WON = 1: int
+PLAYER2_WON = 2: int
+DRAW = 3: int
+CONTINUE = 4: int

HandleASession TicTacToeClient

-player1: Socket
-player2: Socket
-cell: char[][]
-continueToPlay: boolean

+run(): void
-isWon(): boolean
-isFull(): boolean
-sendMove(out:
 DataOutputStream, row: int,
 column: int): void

-myTurn: boolean
-myToken: char
-otherToken: char
-cell: Cell[][]
-continueToPlay: boolean
-rowSelected: int
-columnSelected: int
-fromServer: DataInputStream
-toServer: DataOutputStream
-waiting: boolean

+run(): void
-connectToServer(): void
-receiveMove(): void
-sendMove(): void
-receiveInfoFromServer(): void
-waitForPlayerAction(): void

HandleASession

«interface»
TicTacToeConstants

+main(args: String[]):void

M33_LIAN0182_11_SE_C33.indd 20 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.6 Case Study: Distributed Tic-Tac-Toe Games 33-21

 28 ServerSocket serverSocket = new ServerSocket(8000);
 29 Platform.runLater(() -> taLog.appendText(new Date() +
 30 ": Server started at socket 8000\n"));
 31
 32 // Ready to create a session for every two players
 33 while (true) {
 34 Platform.runLater(() -> taLog.appendText(new Date() +
 35 ": Wait for players to join session " + sessionNo + '\n'));
 36
 37 // Connect to player 1
 38 Socket player1 = serverSocket.accept();
 39
 40 Platform.runLater(() -> {
 41 taLog.appendText(new Date() + ": Player 1 joined session "
 42 + sessionNo + '\n');
 43 taLog.appendText("Player 1's IP address" +
 44 player1.getInetAddress().getHostAddress() + '\n');
 45 });
 46
 47 // Notify that the player is Player 1
 48 new DataOutputStream(
 49 player1.getOutputStream()).writeInt(PLAYER1);
 50
 51 // Connect to player 2
 52 Socket player2 = serverSocket.accept();
 53
 54 Platform.runLater(() -> {
 55 taLog.appendText(new Date() +
 56 ": Player 2 joined session " + sessionNo + '\n');
 57 taLog.appendText("Player 2's IP address" +
 58 player2.getInetAddress().getHostAddress() + '\n');
 59 });
 60
 61 // Notify that the player is Player 2
 62 new DataOutputStream(
 63 player2.getOutputStream()).writeInt(PLAYER2);
 64
 65 // Display this session and increment session number
 66 Platform.runLater(() ->
 67 taLog.appendText(new Date() +
 68 ": Start a thread for session " + sessionNo++ + '\n'));
 69
 70 // Launch a new thread for this session of two players
 71 new Thread(new HandleASession(player1, player2)).start();
 72 }
 73 }
 74 catch(IOException ex) {
 75 ex.printStackTrace();
 76 }
 77 }).start();
 78 }
 79
 80 // Define the thread class for handling a new session for two players
 81 class HandleASession implements Runnable, TicTacToeConstants {
 82 private Socket player1;
 83 private Socket player2;
 84
 85 // Create and initialize cells
 86 private char[][] cell = new char[3][3];
 87
 88 private DataInputStream fromPlayer1;

server socket

connect to client

to player1

connect to client

to player2

a session for two players

M33_LIAN0182_11_SE_C33.indd 21 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-22 Chapter 33 Networking

 89 private DataOutputStream toPlayer1;
 90 private DataInputStream fromPlayer2;
 91 private DataOutputStream toPlayer2;
 92
 93 // Continue to play
 94 private boolean continueToPlay = true;
 95
 96 /** Construct a thread */
 97 public HandleASession(Socket player1, Socket player2) {
 98 this.player1 = player1;
 99 this.player2 = player2;
100
101 // Initialize cells
102 for (int i = 0; i < 3; i++)
103 for (int j = 0; j < 3; j++)
104 cell[i][j] = ' ';
105 }
106
107 /** Implement the run() method for the thread */
108 public void run() {
109 try {
110 // Create data input and output streams
111 DataInputStream fromPlayer1 = new DataInputStream(
112 player1.getInputStream());
113 DataOutputStream toPlayer1 = new DataOutputStream(
114 player1.getOutputStream());
115 DataInputStream fromPlayer2 = new DataInputStream(
116 player2.getInputStream());
117 DataOutputStream toPlayer2 = new DataOutputStream(
118 player2.getOutputStream());
119
120 // Write anything to notify player 1 to start
121 // This is just to let player 1 know to start
122 toPlayer1.writeInt(1);
123
124 // Continuously serve the players and determine and report
125 // the game status to the players
126 while (true) {
127 // Receive a move from player 1
128 int row = fromPlayer1.readInt();
129 int column = fromPlayer1.readInt();
130 cell[row][column] = 'X';
131
132 // Check if Player 1 wins
133 if (isWon('X')) {
134 toPlayer1.writeInt(PLAYER1_WON);
135 toPlayer2.writeInt(PLAYER1_WON);
136 sendMove(toPlayer2, row, column);
137 break; // Break the loop
138 }
139 else if (isFull()) { // Check if all cells are filled
140 toPlayer1.writeInt(DRAW);
141 toPlayer2.writeInt(DRAW);
142 sendMove(toPlayer2, row, column);
143 break;
144 }
145 else {
146 // Notify player 2 to take the turn
147 toPlayer2.writeInt(CONTINUE);
148

IO streams

X won?

Is full?

M33_LIAN0182_11_SE_C33.indd 22 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.6 Case Study: Distributed Tic-Tac-Toe Games 33-23

149 // Send player 1's selected row and column to player 2
150 sendMove(toPlayer2, row, column);
151 }
152
153 // Receive a move from Player 2
154 row = fromPlayer2.readInt();
155 column = fromPlayer2.readInt();
156 cell[row][column] = 'O';
157
158 // Check if Player 2 wins
159 if (isWon('O')) {
160 toPlayer1.writeInt(PLAYER2_WON);
161 toPlayer2.writeInt(PLAYER2_WON);
162 sendMove(toPlayer1, row, column);
163 break;
164 }
165 else {
166 // Notify player 1 to take the turn
167 toPlayer1.writeInt(CONTINUE);
168
169 // Send player 2's selected row and column to player 1
170 sendMove(toPlayer1, row, column);
171 }
172 }
173 }
174 catch(IOException ex) {
175 ex.printStackTrace();
176 }
177 }
178
179 /** Send the move to other player */
180 private void sendMove(DataOutputStream out, int row, int column)
181 throws IOException {
182 out.writeInt(row); // Send row index
183 out.writeInt(column); // Send column index
184 }
185
186 /** Determine if the cells are all occupied */
187 private boolean isFull() {
188 for (int i = 0; i < 3; i++)
189 for (int j = 0; j < 3; j++)
190 if (cell[i][j] == ' ')
191 return false; // At least one cell is not filled
192
193 // All cells are filled
194 return true;
195 }
196
197 /** Determine if the player with the specified token wins */
198 private boolean isWon(char token) {
199 // Check all rows
200 for (int i = 0; i < 3; i++)
201 if ((cell[i][0] == token)
202 && (cell[i][1] == token)
203 && (cell[i][2] == token)) {
204 return true;
205 }
206
207 /** Check all columns */
208 for (int j = 0; j < 3; j++)

O won?

send a move

M33_LIAN0182_11_SE_C33.indd 23 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-24 Chapter 33 Networking

209 if ((cell[0][j] == token)
210 && (cell[1][j] == token)
211 && (cell[2][j] == token)) {
212 return true;
213 }
214
215 /** Check major diagonal */
216 if ((cell[0][0] == token)
217 && (cell[1][1] == token)
218 && (cell[2][2] == token)) {
219 return true;
220 }
221
222 /** Check subdiagonal */
223 if ((cell[0][2] == token)
224 && (cell[1][1] == token)
225 && (cell[2][0] == token)) {
226 return true;
227 }
228
229 /** All checked, but no winner */
230 return false;
231 }
232 }
233 }

Listing 33.10 TicTacToeClient.java

 1 import java.io.*;
 2 import java.net.*;
 3 import java.util.Date;
 4 import javafx.application.Application;
 5 import javafx.application.Platform;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.control.ScrollPane;
 9 import javafx.scene.control.TextArea;
 10 import javafx.scene.layout.BorderPane;
 11 import javafx.scene.layout.GridPane;
 12 import javafx.scene.layout.Pane;
 13 import javafx.scene.paint.Color;
 14 import javafx.scene.shape.Ellipse;
 15 import javafx.scene.shape.Line;
 16 import javafx.stage.Stage;
 17
 18 public class TicTacToeClient extends Application
 19 implements TicTacToeConstants {
 20 // Indicate whether the player has the turn
 21 private boolean myTurn = false;
 22
 23 // Indicate the token for the player
 24 private char myToken = ' ';
 25
 26 // Indicate the token for the other player
 27 private char otherToken = ' ';
 28
 29 // Create and initialize cells
 30 private Cell[][] cell = new Cell[3][3];
 31

M33_LIAN0182_11_SE_C33.indd 24 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.6 Case Study: Distributed Tic-Tac-Toe Games 33-25

 32 // Create and initialize a title label
 33 private Label lblTitle = new Label();
 34
 35 // Create and initialize a status label
 36 private Label lblStatus = new Label();
 37
 38 // Indicate selected row and column by the current move
 39 private int rowSelected;
 40 private int columnSelected;
 41
 42 // Input and output streams from/to server
 43 private DataInputStream fromServer;
 44 private DataOutputStream toServer;
 45
 46 // Continue to play?
 47 private boolean continueToPlay = true;
 48
 49 // Wait for the player to mark a cell
 50 private boolean waiting = true;
 51
 52 // Host name or ip
 53 private String host = "localhost";
 54
 55 @Override // Override the start method in the Application class
 56 public void start(Stage primaryStage) {
 57 // Pane to hold cell
 58 GridPane pane = new GridPane();
 59 for (int i = 0; i < 3; i++)
 60 for (int j = 0; j < 3; j++)
 61 pane.add(cell[i][j] = new Cell(i, j), j, i);
 62
 63 BorderPane borderPane = new BorderPane();
 64 borderPane.setTop(lblTitle);
 65 borderPane.setCenter(pane);
 66 borderPane.setBottom(lblStatus);
 67
 68 // Create a scene and place it in the stage
 69 Scene scene = new Scene(borderPane, 320, 350);
 70 primaryStage.setTitle("TicTacToeClient"); // Set the stage title
 71 primaryStage.setScene(scene); // Place the scene in the stage
 72 primaryStage.show(); // Display the stage
 73
 74 // Connect to the server
 75 connectToServer();
 76 }
 77
 78 private void connectToServer() {
 79 try {
 80 // Create a socket to connect to the server
 81 Socket socket = new Socket(host, 8000);
 82
 83 // Create an input stream to receive data from the server
 84 fromServer = new DataInputStream(socket.getInputStream());
 85
 86 // Create an output stream to send data to the server
 87 toServer = new DataOutputStream(socket.getOutputStream());
 88 }
 89 catch (Exception ex) {
 90 ex.printStackTrace();
 91 }

create UI

connect to server

input from server

output to server

M33_LIAN0182_11_SE_C33.indd 25 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-26 Chapter 33 Networking

 92
 93 // Control the game on a separate thread
 94 new Thread(() -> {
 95 try {
 96 // Get notification from the server
 97 int player = fromServer.readInt();
 98
 99 // Am I player 1 or 2?
100 if (player == PLAYER1) {
101 myToken = 'X';
102 otherToken = 'O';
103 Platform.runLater(() -> {
104 lblTitle.setText("Player 1 with token 'X'");
105 lblStatus.setText("Waiting for player 2 to join");
106 });
107
108 // Receive startup notification from the server
109 fromServer.readInt(); // Whatever read is ignored
110
111 // The other player has joined
112 Platform.runLater(() ->
113 lblStatus.setText("Player 2 has joined. I start first"));
114
115 // It is my turn
116 myTurn = true;
117 }
118 else if (player == PLAYER2) {
119 myToken = 'O';
120 otherToken = 'X';
121 Platform.runLater(() -> {
122 lblTitle.setText("Player 2 with token 'O'");
123 lblStatus.setText("Waiting for player 1 to move");
124 });
125 }
126
127 // Continue to play
128 while (continueToPlay) {
129 if (player == PLAYER1) {
130 waitForPlayerAction(); // Wait for player 1 to move
131 sendMove(); // Send the move to the server
132 receiveInfoFromServer(); // Receive info from the server
133 }
134 else if (player == PLAYER2) {
135 receiveInfoFromServer(); // Receive info from the server
136 waitForPlayerAction(); // Wait for player 2 to move
137 sendMove(); // Send player 2's move to the server
138 }
139 }
140 }
141 catch (Exception ex) {
142 ex.printStackTrace();
143 }
144 }).start();
145 }
146
147 /** Wait for the player to mark a cell */
148 private void waitForPlayerAction() throws InterruptedException {
149 while (waiting) {
150 Thread.sleep(100);
151 }

M33_LIAN0182_11_SE_C33.indd 26 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.6 Case Study: Distributed Tic-Tac-Toe Games 33-27

152
153 waiting = true;
154 }
155
156 /** Send this player's move to the server */
157 private void sendMove() throws IOException {
158 toServer.writeInt(rowSelected); // Send the selected row
159 toServer.writeInt(columnSelected); // Send the selected column
160 }
161
162 /** Receive info from the server */
163 private void receiveInfoFromServer() throws IOException {
164 // Receive game status
165 int status = fromServer.readInt();
166
167 if (status == PLAYER1_WON) {
168 // Player 1 won, stop playing
169 continueToPlay = false;
170 if (myToken == 'X') {
171 Platform.runLater(() -> lblStatus.setText("I won! (X)"));
172 }
173 else if (myToken == 'O') {
174 Platform.runLater(() ->
175 lblStatus.setText("Player 1 (X) has won!"));
176 receiveMove();
177 }
178 }
179 else if (status == PLAYER2_WON) {
180 // Player 2 won, stop playing
181 continueToPlay = false;
182 if (myToken == 'O') {
183 Platform.runLater(() -> lblStatus.setText("I won! (O)"));
184 }
185 else if (myToken == 'X') {
186 Platform.runLater(() ->
187 lblStatus.setText("Player 2 (O) has won!"));
188 receiveMove();
189 }
190 }
191 else if (status == DRAW) {
192 // No winner, game is over
193 continueToPlay = false;
194 Platform.runLater(() ->
195 lblStatus.setText("Game is over, no winner!"));
196
197 if (myToken == 'O') {
198 receiveMove();
199 }
200 }
201 else {
202 receiveMove();
203 Platform.runLater(() -> lblStatus.setText("My turn"));
204 myTurn = true; // It is my turn
205 }
206 }
207
208 private void receiveMove() throws IOException {
209 // Get the other player's move
210 int row = fromServer.readInt();
211 int column = fromServer.readInt();

M33_LIAN0182_11_SE_C33.indd 27 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-28 Chapter 33 Networking

212 Platform.runLater(() -> cell[row][column].setToken(otherToken));
213 }
214
215 // An inner class for a cell
216 public class Cell extends Pane {
217 // Indicate the row and column of this cell in the board
218 private int row;
219 private int column;
220
221 // Token used for this cell
222 private char token = ' ';
223
224 public Cell(int row, int column) {
225 this.row = row;
226 this.column = column;
227 this.setPrefSize(2000, 2000); // What happens without this?
228 setStyle("-fx-border-color: black"); // Set cell's border
229 this.setOnMouseClicked(e -> handleMouseClick());
230 }
231
232 /** Return token */
233 public char getToken() {
234 return token;
235 }
236
237 /** Set a new token */
238 public void setToken(char c) {
239 token = c;
240 repaint();
241 }
242
243 protected void repaint() {
244 if (token == 'X') {
245 Line line1 = new Line(10, 10,
246 this.getWidth() − 10, this.getHeight() − 10);
247 line1.endXProperty().bind(this.widthProperty().subtract(10));
248 line1.endYProperty().bind(this.heightProperty().subtract(10));
249 Line line2 = new Line(10, this.getHeight() − 10,
250 this.getWidth() − 10, 10);
251 line2.startYProperty().bind(
252 this.heightProperty().subtract(10));
253 line2.endXProperty().bind(this.widthProperty().subtract(10));
254
255 // Add the lines to the pane
256 this.getChildren().addAll(line1, line2);
257 }
258 else if (token == 'O') {
259 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
260 this.getHeight() / 2, this.getWidth() / 2 − 10,
261 this.getHeight() / 2 − 10);
262 ellipse.centerXProperty().bind(
263 this.widthProperty().divide(2));
264 ellipse.centerYProperty().bind(
265 this.heightProperty().divide(2));
266 ellipse.radiusXProperty().bind(
267 this.widthProperty().divide(2).subtract(10));
268 ellipse.radiusYProperty().bind(
269 this.heightProperty().divide(2).subtract(10));
270 ellipse.setStroke(Color.BLACK);
271 ellipse.setFill(Color.WHITE);

model a cell

register listener

draw X

draw O

M33_LIAN0182_11_SE_C33.indd 28 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33.6 Case Study: Distributed Tic-Tac-Toe Games 33-29

272
273 getChildren().add(ellipse); // Add the ellipse to the pane
274 }
275 }
276
277 /* Handle a mouse click event */
278 private void handleMouseClick() {
279 // If cell is not occupied and the player has the turn
280 if (token == ' ' && myTurn) {
281 setToken(myToken); // Set the player's token in the cell
282 myTurn = false;
283 rowSelected = row;
284 columnSelected = column;
285 lblStatus.setText("Waiting for the other player to move");
286 waiting = false; // Just completed a successful move
287 }
288 }
289 }
290 }

The server can serve any number of sessions simultaneously. Each session takes care of two
players. The client can be deployed to run as a Java applet. To run a client as a Java applet
from a Web browser, the server must run from a Web server. Figures 33.15 and 33.16 show
sample runs of the server and the clients.

mouse clicked handler

Figure 33.15 TicTacToeServer accepts connection requests and creates sessions to
serve pairs of players.

The TicTacToeConstants interface defines the constants shared by all the classes in the
project. Each class that uses the constants needs to implement the interface. Centrally defining
constants in an interface is a common practice in Java.

Once a session is established, the server receives moves from the players in alternation.
Upon receiving a move from a player, the server determines the status of the game. If the game
is not finished, the server sends the status (CONTINUE) and the player’s move to the other

Figure 33.16 TicTacToeClient can run as an applet or standalone.

M33_LIAN0182_11_SE_C33.indd 29 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-30 Chapter 33 Networking

player. If the game is won or a draw, the server sends the status (PLAYER1_WON, PLAYER2_
WON, or DRAW) to both players.

The implementation of Java network programs at the socket level is tightly synchronized.
An operation to send data from one machine requires an operation to receive data from the
other machine. As shown in this example, the server and the client are tightly synchronized
to send or receive data.

 33.6.1 What would happen if the preferred size for a cell is not set in line 227 in Listing
33.10?

 33.6.2 If a player does not have the turn but clicks on an empty cell, what will the client
program in Listing 33.10 do?

Point
Check

Chapter Summary

1. Java supports stream sockets and datagram sockets. Stream sockets use TCP (Trans-
mission Control Protocol) for data transmission, whereas datagram sockets use UDP
(User Datagram Protocol). Since TCP can detect lost transmissions and resubmit them,
transmissions are lossless and reliable. UDP, in contrast, cannot guarantee lossless
transmission.

2. To create a server, you must first obtain a server socket, using new ServerSocket(port).
After a server socket is created, the server can start to listen for connections, using the
accept() method on the server socket. The client requests a connection to a server by
using new Socket(serverName, port) to create a client socket.

3. Stream socket communication is very much like input/output stream communication
after the connection between a server and a client is established. You can obtain an input
stream using the getInputStream() method and an output stream using the getOut-
putStream() method on the socket.

4. A server must often work with multiple clients at the same time. You can use threads
to handle the server’s multiple clients simultaneously by creating a thread for each
connection.

Quiz

Answer the quiz for this chapter online at book Companion Website.

client socket 33-3
domain name 33-2
domain name server 33-2
localhost 33-3
IP address 33-2
port 33-2

packet-based communication 33-2
server socket 33-2
socket 33-2
stream-based communication 33-2
TCP 33-2
UDP 33-2

Key termS

M33_LIAN0182_11_SE_C33.indd 30 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 33-31

programming exerCiSeS

Section 33.2
 *33.1 (Loan server) Write a server for a client. The client sends loan information (annual

interest rate, number of years, and loan amount) to the server (see Figure 33.17a).
The server computes monthly payment and total payment, and sends them back to
the client (see Figure 33.17b). Name the client Exercise33_01Client and the server
Exercise33_01Server.

Figure 33.17 The client in (a) sends the annual interest rate, number of years, and loan
amount to the server and receives the monthly payment and total payment from the server
in (b).

(a) (b)

Figure 33.18 The client in (a) sends the weight and height of a person to the server and
receives the BMI from the server in (b).

(a) (b)

 *33.2 (BMI server) Write a server for a client. The client sends the weight and height
for a person to the server (see Figure 33.18a). The server computes BMI (Body
Mass Index) and sends back to the client a string that reports the BMI (see Figure
33.18b). See Section 3.8 for computing BMI. Name the client Exercise33_02Client
and the server Exercise33_02Server.

Sections 33.3 and 33.4
 *33.3 (Loan server for multiple clients) Revise Programming Exercise 33.1 to write a

server for multiple clients.

Section 33.5
 33.4 (Count clients) Write a server that tracks the number of the clients connected to

the server. When a new connection is established, the count is incremented by 1.
The count is stored using a random-access file. Write a client program that receives

M33_LIAN0182_11_SE_C33.indd 31 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

33-32 Chapter 33 Networking

the count from the server and displays a message, such as “You are visitor number
11”, as shown in Figure 33.19. Name the client Exercise33_04Client and the server
Exercise33_04Server.

■■ Use the StudentAddress class defined in Listing 33.5 to hold the name, street,
city, state, and zip in an object.

■■ The user can use the buttons First, Next, Previous, and Last to view an address,
and the Add button to add a new address.

■■ Limit the concurrent connections to two clients.

Name the client Exercise33_06Client and the server Exercise33_6Server.

 *33.7 (Transfer last 100 numbers in an array) Programming Exercise 22.12 retrieves the
last 100 prime numbers from a file PrimeNumbers.dat. Write a client program that
requests the server to send the last 100 prime numbers in an array. Name the server
program Exercise33_07Server and the client program Exercise33_07Client. Assume
the numbers of the long type are stored in PrimeNumbers.dat in binary format.

 *33.8 (Transfer last 100 numbers in an ArrayList) Programming Exercise 24.12
retrieves the last 100 prime numbers from a file PrimeNumbers.dat. Write a cli-
ent program that requests the server to send the last 100 prime numbers in an
ArrayList. Name the server program Exercise33_08Server and the client pro-
gram Exercise33_08Client. Assume the numbers of the long type are stored in
PrimeNumbers.dat in binary format.

Figure 33.20 You can view and add an address.

Figure 33.19 The client displays how many times the server has been accessed. The server
stores the count.

 33.5 (Send loan information in an object) Revise Exercise 33.1 for the client to send a
loan object that contains annual interest rate, number of years, and loan amount
and for the server to send the monthly payment and total payment.

Section 33.6
 33.6 (Display and add addresses) Develop a client/server application to view and add

addresses, as shown in Figure 33.20.

M33_LIAN0182_11_SE_C33.indd 32 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 33-33

Section 33.7
 **33.9 (Chat) Write a program that enables two users to chat. Implement one user as the

server (see Figure 33.21a) and the other as the client (see Figure 33.21b). The server
has two text areas: one for entering text, and the other (noneditable) for displaying
text received from the client. When the user presses the Enter key, the current line
is sent to the client. The client has two text areas: one (noneditable) for displaying
text from the server and the other for entering text. When the user presses the Enter
key, the current line is sent to the server. Name the client Exercise33_09Client and
the server Exercise33_09Server.

Figure 33.21 The server and client send text to and receive text from each other.

(a) (b)

Figure 33.22 The server starts in (a) with three clients in (b) and (c).

(a) (b) (c)

***33.10 (Multiple client chat) Write a program that enables any number of clients to chat.
Implement one server that serves all the clients, as shown in Figure 33.22. Name
the client Exercise33_10Client and the server Exercise33_10Server.

M33_LIAN0182_11_SE_C33.indd 33 5/29/17 7:42 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To understand the concepts of databases and database management

systems (§34.2).

■■ To understand the relational data model: relational data structures, con-
straints, and languages (§34.2).

■■ To use SQL to create and drop tables and to retrieve and modify data
(§34.3).

■■ To learn how to load a driver, connect to a database, execute state-
ments, and process result sets using JDBC (§34.4).

■■ To use prepared statements to execute precompiled SQL statements
(§34.5).

■■ To use callable statements to execute stored SQL procedures and func-
tions (§34.6).

■■ To explore database metadata using the DatabaseMetaData and
ResultSetMetaData interfaces (§34.7).

Java Database
Programming

CHAPTER

34

M34_LIAN0182_11_SE_C34.indd 1 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-2 Chapter 34 Java Database Programming

34.1 Introduction
Java provides the API for developing database applications that works with any
 relational database systems.

You may have heard a lot about database systems. Database systems are everywhere.
Your social security information is stored in a database by the government. If you shop
online, your purchase information is stored in a database by the company. If you attend a
 university, your academic information is stored in a database by the university. Database systems
not only store data, they also provide means of accessing, updating, manipulating, and ana-
lyzing data. Your social security information is updated periodically, and you can register for
courses online. Database systems play an important role in society and in commerce.

This chapter introduces database systems, the SQL language, and how database applica-
tions can be developed using Java. If you already know SQL, you can skip Sections 34.2
and 34.3.

34.2 Relational Database Systems
SQL is the standard database language for defining and accessing databases.

A database system consists of a database, the software that stores and manages data in the
database, and the application programs that present data and enable the user to interact with
the database system, as shown in Figure 34.1.

Point
Key

Point
Key

database system

Figure 34.1 A database system consists of data, database management software, and appli-
cation programs.

database

Application Users

Application Programs

Database Management System (DBMS)

System Users

A database is a repository of data that form information. When you purchase a database
system—such as MySQL, Oracle, IBM’s DB2 and Informix, Microsoft SQL Server, or
 Sybase—from a software vendor, you actually purchase the software comprising a database
management system (DBMS). Database management systems are designed for use by profes-
sional programmers and are not suitable for ordinary customers. Application programs are built
on top of the DBMS for customers to access and update the database. Thus, application pro-
grams can be viewed as the interfaces between the database system and its users. Application
programs may be stand-alone GUI applications or Web applications and may access several
different database systems in the network, as shown in Figure 34.2.

Most of today’s database systems are relational database systems. They are based on the
relational data model, which has three key components: structure, integrity, and language.

DBMS

M34_LIAN0182_11_SE_C34.indd 2 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.2 Relational Database Systems 34-3

Structure defines the representation of the data. Integrity imposes constraints on the data.
Language provides the means for accessing and manipulating data.

34.2.1 Relational Structures
The relational model is built around a simple and natural structure. A relation is actually a
table that consists of nonduplicate rows. Tables are easy to understand and use. The relational
model provides a simple yet powerful way to represent data.

A row of a table represents a record, and a column of a table represents the value of a single
attribute of the record. In relational database theory, a row is called a tuple, and a column is
called an attribute. Figure 34.3 shows a sample table that stores information about the courses
offered by a university. The table has eight tuples, and each tuple has five attributes.

relational model

tuple
attribute

Figure 34.2 An application program can access multiple database systems.

Database Management System

database

Application Programs

Application Users

Database Management System

……

…

Figure 34.3 A table has a table name, column names, and rows.

Columns/Attributes

Tuples/
Rows 11111 CSCI 1301 Introduction to Java I 4

11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
11114 CSCI 4750 Rapid Java Application 3
11115 MATH 2750 Calculus I 5
11116 MATH 3750 Calculus II 5
11117 EDUC 1111 Reading 3
11118 ITEC 1344 Database Administration 3

courseId subjectId courseNumber title numOfCreditsCourse Table

Relation/Table Name

Tables describe the relationship among data. Each row in a table represents a record of
related data. For example, “11111,” “CSCI,” “1301,” “Introduction to Java I,” and “4” are
related to form a record (the first row in Figure 34.3) in the Course table. Just as the data
in the same row are related, so too data in different tables may be related through common
attributes. Suppose the database has two other tables, Student and Enrollment, as shown in

M34_LIAN0182_11_SE_C34.indd 3 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-4 Chapter 34 Java Database Programming

34.2.2 Integrity Constraints
An integrity constraint imposes a condition that all the legal values in a table must satisfy.
Figure 34.6 shows an example of some integrity constraints in the Subject and Course
tables.

In general, there are three types of constraints: domain constraints, primary key con-
straints, and foreign key constraints. Domain constraints and primary key constraints are
known as intrarelational constraints, meaning that a constraint involves only one relation.
The foreign key constraint is interrelational, meaning that a constraint involves more than
one relation.

integrity constraint

Figure 34.4 A Student table stores student information.

deptID

444111110 Jacob R Smith 9129219434 1985-04-09 99 Kingston Street 31435 BIOL
444111111 John K Stevenson 9129219434 null 100 Main Street 31411 BIOL
444111112 George K Smith 9129213454 1974-10-10 1200 Abercorn St. 31419 CS
444111113 Frank E Jones 9125919434 1970-09-09 100 Main Street 31411 BIOL
444111114 Jean K Smith 9129219434 1970-02-09 100 Main Street 31411 CHEM
444111115 Josh R Woo 7075989434 1970-02-09 555 Franklin St. 31411 CHEM
444111116 Josh R Smith 9129219434 1973-02-09 100 Main Street 31411 BIOL
444111117 Joy P Kennedy 9129229434 1974-03-19 103 Bay Street 31412 CS
444111118 Toni R Peterson 9129229434 1964-04-29 103 Bay Street 31412 MATH
444111119 Patrick R Stoneman 9129229434 1969-04-29 101 Washington St. 31435 MATH
444111120 Rick R Carter 9125919434 1986-04-09 19 West Ford St. 31411 BIOL

Student Table

ssn �rstName mi lastName phone birthDate street zipCode

Figure 34.5 An Enrollment table stores student enrollment information.

Enrollment Table

444111110 11111 2004-03-19 A
444111110 11112 2004-03-19 B
444111110 11113 2004-03-19 C
444111111 11111 2004-03-19 D
444111111 11112 2004-03-19 F
444111111 11113 2004-03-19 A
444111112 11114 2004-03-19 B
444111112 11115 2004-03-19 C
444111112 11116 2004-03-19 D
444111113 11111 2004-03-19 A
444111113 11113 2004-03-19 A
444111114 11115 2004-03-19 B
444111115 11115 2004-03-19 F
444111115 11116 2004-03-19 F
444111116 11111 2004-03-19 D
444111117 11111 2004-03-19 D
444111118 11111 2004-03-19 A
444111118 11112 2004-03-19 D
444111118 11113 2004-03-19 B

ssn courseId dateRegistered grade

Figures 34.4 and 34.5. The Course table and the Enrollment table are related through their
common attribute courseId, and the Enrollment table and the Student table are related
through ssn.

M34_LIAN0182_11_SE_C34.indd 4 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.2 Relational Database Systems 34-5

Domain Constraints

Domain constraints specify the permissible values for an attribute. Domains can be specified
using standard data types, such as integers, floating-point numbers, fixed-length strings, and
variant-length strings. The standard data type specifies a broad range of values. Additional con-
straints can be specified to narrow the ranges. For example, you can specify that the
 numOfCredits attribute (in the Course table) must be greater than 0 and less than 5. If an
attribute has different values for each tuple in a relation, you can specify the attribute to be unique.
You can also specify whether an attribute can be null, which is a special value in a database
meaning unknown or not applicable. As shown in the Student table, birthDate may be null.

Primary Key Constraints

A primary key is a set of attributes that uniquely identifyies the tuples in a relations. Why is it
called a primary key, rather than simply key? To understand this, it is helpful to know superkeys,
keys, and candidate keys. A superkey is an attribute or a set of attributes that uniquely identifies
the relation. That is, no two tuples have the same values on a superkey. By definition, a relation
consists of a set of distinct tuples. The set of all attributes in the relation forms a superkey.

A key K is a minimal superkey, meaning that any proper subset of K is not a superkey. A
relation can have several keys. In this case, each of the keys is called a candidate key. The
primary key is one of the candidate keys designated by the database designer. The primary key
is often used to identify tuples in a relation. As shown in Figure 34.6, courseId is the primary
key in the Course table, and ssn and courseId form a primary key in the Enrollment table.

Foreign Key Constraints

In a relational database, data are related. Tuples in a relation are related, and tuples in different
relations are related through their common attributes. Informally speaking, the common attrib-
utes are foreign keys. The foreign key constraints define the relationships among relations.

Formally, a set of attributes FK is a foreign key in a relation R that references relation T if
it satisfies the following two rules:

■■ The attributes in FK have the same domain as the primary key in T.

■■ A nonnull value on FK in R must match a primary key value in T.

domain constraint

superkey

primary key

candidate key

relational database

foreign key constraint
foreign key

Figure 34.6 The Enrollment table and the Course table have integrity constraints.

11111 CSCI 1301 Introduction to Java I 4
11112 CSCI 1302 Introduction to Java II 3
11113 CSCI 3720 Database Systems 3
...

444111110 11111 2004-03-19 A
444111110 11112 2004-03-19 B
444111110 11113 2004-03-19 C
...

Course Table

Each value in the
numOfCredits column must be
greater than 0 and less than 5

Each value in courseId in the
Enrollment table must match a value
in courseId in the Course table

Each row must have a
value for courseId, and
the value must be unique

Enrollment Table ssn courseId dateRegistered grade

courseId subjectId courseNumber title numOfCredits

M34_LIAN0182_11_SE_C34.indd 5 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-6 Chapter 34 Java Database Programming

As shown in Figure 34.6, courseId is the foreign key in Enrollment that references the
primary key courseId in Course. Every courseId value must match a courseId value
in Course.

Enforcing Integrity Constraints

The database management system enforces integrity constraints and rejects operations that
would violate them. For example, if you attempt to insert the new record (“11115,” “CSCI,”
“2490,” “C+ + Programming,” “0”) into the Course table, it would fail because the credit
hours must be greater than 0; if you attempted to insert a record with the same primary key as
an existing record in the table, the DBMS would report an error and reject the operation; if you
attempted to delete a record from the Course table whose primary key value is referenced by
the records in the Enrollment table, the DBMS would reject this operation.

Note
All relational database systems support primary key constraints and foreign key
 constraints, but not all database systems support domain constraints. In the Microsoft
Access database, for example, you cannot specify the constraint that numOfCredits
is greater than 0 and less than 5.

 34.2.1 What are superkeys, candidate keys, and primary keys?

 34.2.2 What is a foreign key?

 34.2.3 Can a relation have more than one primary key or foreign key?

 34.2.4 Does a foreign key need to be a primary key in the same relation?

 34.2.5 Does a foreign key need to have the same name as its referenced primary key?

 34.2.6 Can a foreign key value be null?

34.3 SQL
Structured Query Language (SQL) is the language for defining tables and integrity
constraints, and for accessing and manipulating data.

SQL (pronounced “S-Q-L” or “sequel”) is the universal language for accessing relational
database systems. Application programs may allow users to access a database without directly
using SQL, but these applications themselves must use SQL to access the database. This
 section introduces some basic SQL commands.

Note
There are many relational database management systems. They share the common SQL
language but do not all support every feature of SQL. Some systems have their own
extensions to SQL. This section introduces standard SQL supported by all systems.

SQL can be used on MySQL, Oracle, Sybase, IBM DB2, IBM Informix, MS Access,
Apache Derby, or any other relational database system. Apache Derby is an open source rela-
tional database management system developed using Java. Oracle distributes Apache Derby
as Java DB and bundled with Java so you can use it in any Java application without installing
a database. Java DB is ideal for supporting a small database in a Java application. This chapter
uses MySQL to demonstrate SQL and Java database programming.

The Companion Website contains the following supplements on how to install and use three
popular databases: MySQL, Oracle, and Java DB:

■■ Supplement IV.B: Tutorial for MySQL

■■ Supplement IV.C: Tutorial for Oracle

■■ Supplement IV.D: Tutorial for Java DB

auto enforcement

Point
Check

Point
Key

SQL

database language

standard SQL

MySQL Tutorial

Oracle Tutorial

Java DB Tutorial

M34_LIAN0182_11_SE_C34.indd 6 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.3 SQL 34-7

34.3.1 Creating a User Account on MySQL
Assume you have installed MySQL 5 with the default configuration. To match all the examples
in this book, you should create a user named scott with the password tiger. You can perform
the administrative tasks using the MySQL Workbench or using the command line. MySQL
Workbench is a GUI tool for managing MySQL databases. Here are the steps to create a user
from the command line:

1. From the DOS command prompt, type

mysql –uroot -p

You will be prompted to enter the root password, as shown in Figure 34.7.

2. At the mysql prompt, enter

use mysql;

3. To create user scott with password tiger, enter

create user 'scott'@'localhost' identified by 'tiger';

4. To grant privileges to scott, enter

grant select, insert, update, delete, create, create view, drop,
 execute, references on *.* to 'scott'@'localhost';

■■ If you want to enable remote access of the account from any IP address, enter

grant all privileges on *.* to 'scott'@'%'
 identified by 'tiger';

■■ If you want to restrict the account’s remote access to just one particular IP address,
enter

grant all privileges on *.* to 'scott'@'ipAddress'
 identified by 'tiger';

5. Enter

exit;

to exit the MySQL console.

Figure 34.7 You can access a MySQL database server from the command window.

M34_LIAN0182_11_SE_C34.indd 7 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-8 Chapter 34 Java Database Programming

Note
On Windows, your MySQL database server starts every time your computer starts. You
can stop it by typing the command net stop mysql and restart it by typing the
 command net start mysql.

By default, the server contains two databases named mysql and test. The mysql database
contains the tables that store information about the server and its users. This database is
intended for the server administrator to use. For example, the administrator can use it to cre-
ate users and grant or revoke user privileges. Since you are the owner of the server installed
on your system, you have full access to the mysql database. However, you should not cre-
ate user tables in the mysql database. You can use the test database to store data or create
new databases. You can also create a new database using the command create data-
base databasename or delete an existing database using the command drop database
databasename.

34.3.2 Creating a Database
To match the examples in this book, you should create a database named javabook. Here are
the steps to create it:

1. From the DOS command prompt, type

mysql –uscott -ptiger

to login to mysql, as shown in Figure 34.8.

2. At the mysql prompt, enter

create database javabook;

stop mysql
start mysql

Figure 34.8 You can create databases in MySQL.

For your convenience, the SQL statements for creating and initializing tables used in
this book are provided in Supplement IV.A. You can download the script for MySQL and
save it to script.sql. To execute the script, first switch to the javabook database using the
following command:

use javabook;

then type

source script.sql;

as shown in Figure 34.9.

run script file

M34_LIAN0182_11_SE_C34.indd 8 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.3 SQL 34-9

Note
You can populate the javabook database using the script from Supplement IV.A.

34.3.3 Creating and Dropping Tables
Tables are the essential objects in a database. To create a table, use the create table state-
ment to specify a table name, attributes, and types, as in the following example:

create table Course (
 courseId char(5),
 subjectId char(4) not null,
 courseNumber integer,
 title varchar(50) not null,
 numOfCredits integer,
 primary key (courseId)
);

This statement creates the Course table with attributes courseId, subjectId,
 courseNumber, title, and numOfCredits. Each attribute has a data type that specifies the
type of data stored in the attribute. char(5) specifies that courseId consists of five charac-
ters. varchar(50) specifies that title is a variant-length string with a maximum of 50 char-
acters. integer specifies that courseNumber is an integer. The primary key is courseId.

The tables Student and Enrollment can be created as follows:

populating database

create table

Figure 34.9 You can run SQL commands in a script file.

create table Student (
 ssn char(9),
 firstName varchar(25),
 mi char(1),
 lastName varchar(25),
 birthDate date,
 street varchar(25),
 phone char(11),
 zipCode char(5),
 deptId char(4),
 primary key (ssn)
);

create table Enrollment (
 ssn char(9),
 courseId char(5),
 dateRegistered date,
 grade char(1),
 primary key (ssn, courseId),
 foreign key (ssn) references
 Student(ssn),
 foreign key (courseId) references
 Course(courseId)
);

Note
SQL keywords are not case sensitive. This book adopts the following naming
 conventions: tables are named in the same way as Java classes, and attributes are
named in the same way as Java variables. SQL keywords are named in the same way
as Java keywords.

naming convention

M34_LIAN0182_11_SE_C34.indd 9 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-10 Chapter 34 Java Database Programming

If a table is no longer needed, it can be dropped permanently using the drop table
 command. For example, the following statement drops the Course table:

drop table Course;

If a table to be dropped is referenced by other tables, you have to drop the other tables
first. For example, if you have created the tables Course, Student, and Enrollment and
want to drop Course, you have to first drop Enrollment, because Course is referenced by
Enrollment.

Figure 34.10 shows how to enter the create table statement from the MySQL console.

drop table

Figure 34.10 A table is created using the create table statement.

Figure 34.11 (a) You can use Notepad to create a text file for SQL commands. (b) You
can run the SQL commands in a script file from MySQL.

(a) (b)

If you make typing errors, you have to retype the whole command. To avoid retyping, you
can save the command in a file, then run the command from the file. To do so, create a text file
to contain commands, named, for example, test.sql. You can create the text file using any text
editor, such as Notepad, as shown in Figure 34.11a. To comment a line, precede it with two
dashes. You can now run the script file by typing source test.sql from the SQL command
prompt, as shown in Figure 34.11b.

34.3.4 Simple Insert, Update, and Delete
Once a table is created, you can insert data into it. You can also update and delete records. This
section introduces simple insert, update, and delete statements.

The syntax to insert a record into a table is:

insert into tableName [(column1, column2, ..., column)]
values (value1, value2, ..., valuen);

M34_LIAN0182_11_SE_C34.indd 10 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.3 SQL 34-11

For example, the following statement inserts a record into the Course table. The new record
has the courseId ‘11113’, subjectId ‘CSCI’, courseNumber ‘3720’, title ‘Database
Systems’, and creditHours 3.

insert into Course (courseId, subjectId, courseNumber, title, numOfCredits)
values ('11113', 'CSCI', '3720', 'Database Systems', 3);

The column names are optional. If they are omitted, all the column values for the record must
be entered, even though the columns have default values. String values are case sensitive and
enclosed inside single quotation marks in SQL.

The syntax to update a table is:

update tableName
set column1 = newValue1 [, column2 = newValue2, ...]
[where condition];

For example, the following statement changes the numOfCredits for the course whose title
is Database Systems to 4.

update Course
set numOfCredits = 4
where title = 'Database Systems';

The syntax to delete records from a table is:

delete from tableName
[where condition];

For example, the following statement deletes the Database Systems course from the Course
table:

delete from Course
where title = 'Database Systems';

The following statement deletes all the records from the Course table:

delete from Course;

34.3.5 Simple Queries
To retrieve information from tables, use a select statement with the following syntax:

select column-list
from table-list
[where condition];

The select clause lists the columns to be selected. The from clause refers to the tables
involved in the query. The optional where clause specifies the conditions for the selected
rows.

Query 1: Select all the students in the CS department, as shown in Figure 34.12.

select firstName, mi, lastName
from Student
where deptId = 'CS';

M34_LIAN0182_11_SE_C34.indd 11 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-12 Chapter 34 Java Database Programming

34.3.6 Comparison and Boolean Operators
SQL has six comparison operators, as shown in Table 34.1, and three Boolean operators, as
shown in Table 34.2.

Operator Description

= Equal to

<> or != Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Table 34.1 Comparison Operators

Operator Description

not Logical negation

and Logical conjunction

or Logical disjunction

Table 34.2 Boolean Operators

Note
The comparison and Boolean operators in SQL have the same meanings as in Java. In
SQL the equal to operator is =, but in Java it is ==. In SQL the not equal to
operator is <> or !=, but in Java it is !=. The not, and, and or operators are !, &&
(&), and || (|) in Java.

Query 2: Get the names of the students who are in the CS dept and live in the ZIP code 31411.

select firstName, mi, lastName
from Student
where deptId = 'CS' and zipCode = '31411';

Note
To select all the attributes from a table, you don’t have to list all the attribute names
in the select clause. Instead, you can just use an asterisk (*), which stands for all the
attributes. For example, the following query displays all the attributes of the students
who are in the CS dept and live in ZIP code 31411.

select *
from Student
where deptId = 'CS' and zipCode = '31411';

Figure 34.12 The result of the select statement is displayed in the MySQL console.

M34_LIAN0182_11_SE_C34.indd 12 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.3 SQL 34-13

34.3.7 The like, between-and, and is null Operators
SQL has a like operator that can be used for pattern matching. The syntax to check whether
a string s has a pattern p is

s like p or s not like p

You can use the wildcard characters % (percent symbol) and _ (underline symbol) in the
pattern p. % matches zero or more characters, and _ matches any single character in s. For
example, lastName like '_mi%' matches any string whose second and third letters
are m and i. lastName not like '_mi%' excludes any string whose second and third
letters are m and i.

Note
In earlier versions of MS Access, the wildcard character is *, and the character ? matches
any single character.

The between-and operator checks whether a value v is between two other values, v1 and
v2, using the following syntax:

v between v1 and v2 or v not between v1 and v2

v between v1 and v2 is equivalent to v >= v1 and v <= v2, and v not between
v1 and v2 is equivalent to v < v1 or v > v2.

The is null operator checks whether a value v is null using the following syntax:

v is null or v is not null

Query 3: Get the Social Security numbers of the students whose grades are between ‘C’
and ‘A’.

select ssn
from Enrollment
where grade between 'C' and 'A';

34.3.8 Column Alias
When a query result is displayed, SQL uses the column names as column headings. Usually the
user gives abbreviated names for the columns, and the columns cannot have spaces when the
table is created. Sometimes it is desirable to give more descriptive names in the result heading.
You can use the column aliases with the following syntax:

 select columnName [as] alias

Query 4: Get the last name and ZIP code of the students in the CS department. Display the
column headings as “Last Name” for lastName and “Zip Code” for zipCode. The query result
is shown in Figure 34.13.

Figure 34.13 You can use a column alias in the display.

M34_LIAN0182_11_SE_C34.indd 13 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-14 Chapter 34 Java Database Programming

select lastName as "Last Name", zipCode as "Zip Code"
from Student
where deptId = 'CS';

Note
The as keyword is optional in MySQL and Oracle, but it is required in MS Access.

34.3.9 The Arithmetic Operators
You can use the arithmetic operators * (multiplication), / (division), + (addition), and − (sub-
traction) in SQL.

Query 5: Assume a credit hour is 50 minutes of lectures and get the total minutes for each
course with the subject CSCI. The query result is shown in Figure 34.14.

select title, 50 * numOfCredits as "Lecture Minutes Per Week"
from Course
where subjectId = 'CSCI';

Figure 34.15 (a) The duplicate tuples are displayed. (b) The distinct tuples are displayed.

(a) (b)

Figure 34.14 You can use arithmetic operators in SQL.

34.3.10 Displaying Distinct Tuples
SQL provides the distinct keyword, which can be used to eliminate duplicate tuples in the
result. Figure 34.15a displays all the subject IDs used by the courses, and Figure 34.15b dis-
plays all the distinct subject IDs used by the courses using the following statement:

select distinct subjectId as "Subject ID"
from Course;

M34_LIAN0182_11_SE_C34.indd 14 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.3 SQL 34-15

When there is more than one column in the select clause, the distinct keyword applies
to the whole tuple in the result. For example, the following statement displays all tuples with
distinct subjectId and title, as shown in Figure 34.16. Note some tuples may have the
same subjectId but different title. These tuples are distinct.

select distinct subjectId, title
from Course;

Figure 34.16 The keyword distinct applies to the entire tuple.

34.3.11 Displaying Sorted Tuples
SQL provides the order by clause to sort the output using the following syntax:

select column-list
from table-list
[where condition]
[order by columns-to-be-sorted];

In the syntax, columns-to-be-sorted specifies a column or a list of columns to be sorted.
By default, the order is ascending. To sort in a descending order, append the desc keyword.
You could also append the asc keyword after columns-to-be-sorted, but it is not neces-
sary. When multiple columns are specified, the rows are sorted based on the first column, then
the rows with the same values on the first column are sorted based on the second column,
and so on.

Query 6: List the full names of the students in the CS department, ordered primarily on
their last names in descending order and secondarily on their first names in ascending order.
The query result is shown in Figure 34.17.

Figure 34.17 You can sort results using the order by clause.

M34_LIAN0182_11_SE_C34.indd 15 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-16 Chapter 34 Java Database Programming

select lastName, firstName, deptId
from Student
where deptId = 'CS'
order by lastName desc, firstName asc;

34.3.12 Joining Tables
Often you need to get information from multiple tables, as demonstrated in the next query.

Query 7: List the courses taken by the student Jacob Smith. To solve this query, you need
to join tables Student and Enrollment, as shown in Figure 34.18.

Figure 34.18 Student and Enrollment are joined on ssn.

A tuple

Student Table

ssn lastName mi �rstName …

Enrollment Table

ssn courseId …

Equal

Figure 34.19 Query 7 demonstrates queries involving multiple tables.

You can write the query in SQL as follows:

select distinct lastName, firstName, courseId
from Student, Enrollment
where Student.ssn = Enrollment.ssn and
 lastName = 'Smith' and firstName = 'Jacob';

The tables Student and Enrollment are listed in the from clause. The query examines
every pair of rows, each made of one item from Student and another from Enrollment and
selects the pairs that satisfy the condition in the where clause. The rows in Student have the
last name, Smith, and the first name, Jacob, and both rows from Student and Enrollment
have the same ssn values. For each pair selected, lastName and firstName from Student
and courseId from Enrollment are used to produce the result, as shown in Figure 34.19.
Student and Enrollment have the same attribute ssn. To distinguish them in a query, use
Student.ssn and Enrollment.ssn.

M34_LIAN0182_11_SE_C34.indd 16 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.4 JDBC 34-17

For more features of SQL, see Supplements IV.H and IV.I.

 34.3.1 Create the tables Course, Student, and Enrollment using the create table
statements in Section 34.3.3, Creating and Dropping Tables. Insert rows into the
Course, Student, and Enrollment tables using the data in Figures 34.3–34.5.

 34.3.2 List all CSCI courses with at least four credit hours.

 34.3.3 List all students whose last names contain the letter e two times.

 34.3.4 List all students whose birthdays are null.

 34.3.5 List all students who take Math courses.

 34.3.6 List the number of courses in each subject.

 34.3.7 Assume each credit hour is 50 minutes of lectures. Get the total minutes for the
courses that each student takes.

34.4 JDBC
JDBC is the Java API for accessing relational database.

The Java API for developing Java database applications is called JDBC. JDBC is the trade-
marked name of a Java API that supports Java programs that access relational databases. JDBC
is not an acronym, but it is often thought to stand for Java Database Connectivity.

JDBC provides Java programmers with a uniform interface for accessing and manipulat-
ing relational databases. Using the JDBC API, applications written in the Java programming
language can execute SQL statements, retrieve results, present data in a user-friendly interface,
and propagate changes back to the database. The JDBC API can also be used to interact with
multiple data sources in a distributed, heterogeneous environment.

The relationships among Java programs, JDBC API, JDBC drivers, and relational databases
are shown in Figure 34.20. The JDBC API is a set of Java interfaces and classes used to write
Java programs for accessing and manipulating relational databases. Since a JDBC driver serves
as the interface to facilitate communications between JDBC and a proprietary database, JDBC
drivers are database specific and are normally provided by the database vendors. You need

Point
Check

Point
Key

Figure 34.20 Java programs access and manipulate databases through JDBC drivers.

Java Programs

JDBC API

DB2 JDBC
Driver

Local or remote
ORACLE DB

Local or remote
DB2 DB

MySQL JDBC
Driver

Local or remote
MySQL DB

Oracle JDBC
Driver

M34_LIAN0182_11_SE_C34.indd 17 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-18 Chapter 34 Java Database Programming

MySQL JDBC drivers to access the MySQL database, Oracle JDBC drivers to access the
Oracle database, and DB2 JDBC driver to access the DB2 database.

34.4.1 Developing Database Applications Using JDBC
The JDBC API is a Java application program interface to generic SQL databases that
enables Java developers to develop DBMS-independent Java applications using a uniform
interface.

The JDBC API consists of classes and interfaces for establishing connections with data-
bases, sending SQL statements to databases, processing the results of SQL statements, and
obtaining database metadata. Four key interfaces are needed to develop any database applica-
tion using Java: Driver, Connection, Statement, and ResultSet. These interfaces define
a framework for generic SQL database access. The JDBC API defines these interfaces, and the
JDBC driver vendors provide the implementation for the interfaces. Programmers use these
interfaces.

The relationship of these interfaces is shown in Figure 34.21. A JDBC application loads an
appropriate driver using the Driver interface, connects to the database using the Connection
interface, creates and executes SQL statements using the Statement interface, and processes
the result using the ResultSet interface if the statements return results. Note some state-
ments, such as SQL data definition statements and SQL data modification statements, do not
return results.

Figure 34.21 JDBC classes enable Java programs to connect to the database, send SQL
statements, and process results.

Driver

Connection Connection

Statement

ResultSet

Statement

ResultSet

Statement

ResultSet

Statement

ResultSet

The JDBC interfaces and classes are the building blocks in the development of Java data-
base programs. A typical Java program takes the following steps to access a database.

1. Loading drivers.

An appropriate driver must be loaded using the statement shown below before connecting to
a database.

Class.forName("JDBCDriverClass");

A driver is a concrete class that implements the java.sql.Driver interface. The drivers for
MySQL, Oracle, and Java DB are listed in Table 34.3. If your program accesses several differ-
ent databases, all their respective drivers must be loaded.

The most recent platform independent version of MySQL JDBC driver is mysql- connector-
java-5.1.26.jar. This file is contained in a ZIP file downloadable from dev.mysql.com/down-
loads/connector/j/. The most recent version of Oracle JDBC driver is ojdbc6.jar (downloadable
from www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html).

mysql-connector-java-5.1.26.jar
ojdbc6.jar

M34_LIAN0182_11_SE_C34.indd 18 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.4 JDBC 34-19

Java DB has two versions: embedded and networked. Embedded version is used when you
access Java DB locally, while the network version enables you to access Java DB on the net-
work. To use these drivers, you have to add their jar files in the classpath using the following
DOS command on Windows:

set classpath=%classpath%;c:\book\lib\mysql-connector-java-5.1.26.
jar;c:\book\lib\ojdbc6.jar;c:\program files\jdk1.8.0\db\lib\derby.
jar

If you use an IDE such as Eclipse or NetBeans, you need to add these jar files into the library
in the IDE.

Note
com.mysql.jdbc.Driver is a class in mysql-connector-java-5.1.26.jar,
and oracle.jdbc.driver.OracleDriver is a class in ojdbc6.jar. mysql-
connector-java-5.1.26.jar, ojdbc6.jar, and derby.jar contains many
classes to support the driver. These classes are used by JDBC but not directly by JDBC
programmers. When you use a class explicitly in the program, it is automatically loaded
by the JVM. The driver classes, however, are not used explicitly in the program, so you
have to write the code to tell the JVM to load them.

Note
Java supports automatic driver discovery, so you don’t have to load the driver explicitly.
At the time of this writing, however, this feature is not supported for all database drivers.
To be safe, load the driver explicitly.

2. Establishing connections.

To connect to a database, use the static method getConnection(databaseURL) in the
DriverManager class, as follows:

Connection connection = DriverManager.getConnection(databaseURL);

where databaseURL is the unique identifier of the database on the Internet. Table 34.4 lists
the URL patterns for the MySQL, Oracle, and Java DB.

why load a driver?

automatic driver discovery

Database Driver Class Source

MySQL com.mysql.jdbc.Driver mysql-connector-java-5.1.26.jar

Oracle oracle.jdbc.driver.OracleDriver ojdbc6.jar

Java DB (embedded) org.apache.derby.jdbc.EmbeddedDriver derby.jar

Java DB (network) org.apache.derby.jdbc.ClientDriver derbynet.jar

Table 34.3 JDBC Drivers

Database URL Pattern

MySQL jdbc:mysql://hostname/dbname

Oracle jdbc:oracle:thin:@hostname:port#:oracleDBSID

Java DB (embedded) jdbc:derby:dbname

Java DB (network) jdbc:derby://hostname/dbname

Table 34.4 JDBC URLs

M34_LIAN0182_11_SE_C34.indd 19 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-20 Chapter 34 Java Database Programming

The databaseURL for a MySQL database specifies the host name and database name to locate
a database. For example, the following statement creates a Connection object for the local
MySQL database javabook with username scott and password tiger:

Connection connection = DriverManager.getConnection
 ("jdbc:mysql://localhost/javabook", "scott", "tiger");

Recall that by default, MySQL contains two databases named mysql and test. Section 34.3.2,
Creating a Database, created a custom database named javabook. We will use javabook in
the examples.

The databaseURL for an Oracle database specifies the hostname, the port# where the
 database listens for incoming connection requests, and the oracleDBSID database name to
locate a database. For example, the following statement creates a Connection object for the
Oracle database on liang.armstrong.edu with the username scott and password tiger:

Connection connection = DriverManager.getConnection
 ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
 "scott", "tiger");

3. Creating statements.

If a Connection object can be envisioned as a cable linking your program to a database, an
object of Statement can be viewed as a cart that delivers SQL statements for execution by
the database and brings the result back to the program. Once a Connection object is created,
you can create statements for executing SQL statements as follows:

Statement statement = connection.createStatement();

4. Executing statements.

SQL data definition language (DDL) and update statements can be executed using
executeUpdate(String sql), and an SQL query statement can be executed using
executeQuery(String sql). The result of the query is returned in ResultSet. For
 example, the following code executes the SQL statement create table Temp (col1
char(5), col2 char(5)):

statement.executeUpdate
 ("create table Temp (col1 char(5), col2 char(5))");

This next code executes the SQL query select firstName, mi, lastName from Student
where lastName = 'Smith':

// Select the columns from the Student table
ResultSet resultSet = statement.executeQuery
 ("select firstName, mi, lastName from Student where lastName "
 + " = 'Smith'");

5. Processing ResultSet.

The ResultSet maintains a table whose current row can be retrieved. The initial row position
is null. You can use the next method to move to the next row and the various getter methods
to retrieve values from a current row. For example, the following code displays all the results
from the preceding SQL query:

// Iterate through the result and print the student names
while (resultSet.next())
 System.out.println(resultSet.getString(1) + " " +
 resultSet.getString(2) + " " + resultSet.getString(3));

connect MySQL DB

connect Oracle DB

M34_LIAN0182_11_SE_C34.indd 20 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.4 JDBC 34-21

The getString(1), getString(2), and getString(3) methods retrieve the
 column values for firstName, mi, and lastName, respectively. Alternatively, you can
use getString("firstName"), getString("mi"), and getString("lastName") to
retrieve the same three column values. The first execution of the next() method sets the
 current row to the first row in the result set, and subsequent invocations of the next() method
set the current row to the second row, third row, and so on, to the last row.

Listing 34.1 is a complete example that demonstrates connecting to a database, executing
a simple query, and processing the query result with JDBC. The program connects to a local
MySQL database and displays the students whose last name is Smith.

lisTing 34.1 SimpleJdbc.java
 1 import java.sql.*;
 2
 3 public class SimpleJdbc {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15 // Create a statement
16 Statement statement = connection.createStatement();
17
18 // Execute a statement
19 ResultSet resultSet = statement.executeQuery
20 ("select firstName, mi, lastName from Student where lastName "
21 + " = 'Smith'");
22
23 // Iterate through the result and print the student names
24 while (resultSet.next())
25 System.out.println(resultSet.getString(1) + "\t" +
26 resultSet.getString(2) + "\t" + resultSet.getString(3));
27
28 // Close the connection
29 connection.close();
30 }
31 }

The statement in line 7 loads a JDBC driver for MySQL, and the statement in lines 11–13
connects to a local MySQL database. You can change them to connect to an Oracle or other
databases. The program creates a Statement object (line 16), executes an SQL statement and
returns a ResultSet object (lines 19–21), and retrieves the query result from the ResultSet
object (lines 24–26). The last statement (line 29) closes the connection and releases resources
related to the connection. You can rewrite this program using the try-with-resources syntax.
See www.cs.armstrong.edu/liang/intro11e/html/SimpleJdbcWithAutoClose.html.

Note
If you run this program from the DOS prompt, specify the appropriate driver in the
classpath, as shown in Figure 34.22.

load driver

connect database

create statement

execute statement

get result

close connection

run from DOS prompt

M34_LIAN0182_11_SE_C34.indd 21 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-22 Chapter 34 Java Database Programming

The classpath directory and jar files are separated by commas. The period (.) represents
the current directory. For convenience, the driver files are placed under the lib directory.

Caution
Do not use a semicolon (;) to end the Oracle SQL command in a Java program. The
semicolon may not work with the Oracle JDBC drivers. It does work, however, with the
other drivers used in this book.

Note
The Connection interface handles transactions and specifies how they are processed.
By default, a new connection is in autocommit mode, and all its SQL statements are
executed and committed as individual transactions. The commit occurs when the state-
ment completes or the next execute occurs, whichever comes first. In the case of state-
ments returning a result set, the statement completes when the last row of the result set
has been retrieved or the result set has been closed. If a single statement returns multiple
results, the commit occurs when all the results have been retrieved. You can use the
setAutoCommit(false) method to disable autocommit, so all SQL statements
are grouped into one transaction that is terminated by a call to either the commit() or
the rollback() method. The rollback() method undoes all the changes made by
the transaction.

34.4.2 Accessing a Database from JavaFX
This section gives an example that demonstrates connecting to a database from a JavaFX pro-
gram. The program lets the user enter the SSN and the course ID to find a student’s grade, as
shown in Figure 34.23. The code in Listing 34.2 uses the MySQL database on the localhost.

the semicolon issue

autocommit

Figure 34.23 A JavaFX client can access the database on the server.

Figure 34.22 You must include the driver file to run Java database programs.

lisTing 34.2 FindGrade.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.VBox;
 8 import javafx.stage.Stage;
 9 import java.sql.*;

M34_LIAN0182_11_SE_C34.indd 22 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.4 JDBC 34-23

10
11 public class FindGrade extends Application {
12 // Statement for executing queries
13 private Statement stmt;
14 private TextField tfSSN = new TextField();
15 private TextField tfCourseId = new TextField();
16 private Label lblStatus = new Label();
17
18 @Override // Override the start method in the Application class
19 public void start(Stage primaryStage) {
20 // Initialize database connection and create a Statement object
21 initializeDB();
22
23 Button btShowGrade = new Button("Show Grade");
24 HBox hBox = new HBox(5);
25 hBox.getChildren().addAll(new Label("SSN"), tfSSN,
26 new Label("Course ID"), tfCourseId, (btShowGrade));
27
28 VBox vBox = new VBox(10);
29 vBox.getChildren().addAll(hBox, lblStatus);
30
31 tfSSN.setPrefColumnCount(6);
32 tfCourseId.setPrefColumnCount(6);
33 btShowGrade.setOnAction(e -> showGrade());
34
35 // Create a scene and place it in the stage
36 Scene scene = new Scene(vBox, 420, 80);
37 primaryStage.setTitle("FindGrade"); // Set the stage title
38 primaryStage.setScene(scene); // Place the scene in the stage
39 primaryStage.show(); // Display the stage
40 }
41
42 private void initializeDB() {
43 try {
44 // Load the JDBC driver
45 Class.forName("com.mysql.jdbc.Driver");
46 // Class.forName("oracle.jdbc.driver.OracleDriver");
47 System.out.println("Driver loaded");
48
49 // Establish a connection
50 Connection connection = DriverManager.getConnection
51 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
52 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
53 // "scott", "tiger");
54 System.out.println("Database connected");
55
56 // Create a statement
57 stmt = connection.createStatement();
58 }
59 catch (Exception ex) {
60 ex.printStackTrace();
61 }
62 }
63
64 private void showGrade() {
65 String ssn = tfSSN.getText();
66 String courseId = tfCourseId.getText();
67 try {
68 String queryString = "select firstName, mi, " +
69 "lastName, title, grade from Student, Enrollment, Course " +

button listener

load driver
Oracle driver commented

connect to MySQL database

connect to Oracle commented

execute statement

show result

create statement

M34_LIAN0182_11_SE_C34.indd 23 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-24 Chapter 34 Java Database Programming

70 "where Student.ssn = '" + ssn + "' and Enrollment.courseId "
71 + "= '" + courseId +
72 "' and Enrollment.courseId = Course.courseId " +
73 " and Enrollment.ssn = Student.ssn";
74
75 ResultSet rset = stmt.executeQuery(queryString);
76
77 if (rset.next()) {
78 String lastName = rset.getString(1);
79 String mi = rset.getString(2);
80 String firstName = rset.getString(3);
81 String title = rset.getString(4);
82 String grade = rset.getString(5);
83
84 // Display result in a label
85 lblStatus.setText(firstName + " " + mi +
86 " " + lastName + "'s grade on course " + title + " is " +
87 grade);
88 } else {
89 lblStatus.setText("Not found");
90 }
91 }
92 catch (SQLException ex) {
93 ex.printStackTrace();
94 }
95 }
96 }

The initializeDB() method (lines 42–62) loads the MySQL driver (line 45), connects
to the MySQL database on host liang.armstrong.edu (lines 50–55), and creates a state-
ment (line 57).

Note
There is a security hole in this program. If you enter 1' or true or '1 in the SSN
field, you will get the first student’s score, because the query string now becomes

select firstName, mi, lastName, title, grade
from Student, Enrollment, Course
where Student.ssn = '1' or true or '1' and

Enrollment.courseId = ' ' and
Enrollment.courseId = Course.courseId and
Enrollment.ssn = Student.ssn;

You can avoid this problem by using the PreparedStatement interface, which will
be discussed in the next section.

 34.4.1 What are the advantages of developing database applications using Java?

 34.4.2 Describe the following JDBC interfaces: Driver, Connection, Statement, and
ResultSet.

 34.4.3 How do you load a JDBC driver? What are the driver classes for MySQL, Oracle,
and Java DB?

 34.4.4 How do you create a database connection? What are the URLs for MySQL,
 Oracle, and Java DB?

 34.4.5 How do you create a Statement and execute an SQL statement?

 34.4.6 How do you retrieve values in a ResultSet?

 34.4.7 Does JDBC automatically commit a transaction? How do you set autocommit to false?

security hole

Point
Check

M34_LIAN0182_11_SE_C34.indd 24 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.5 PreparedStatement 34-25

34.5 PreparedStatement
PreparedStatement enables you to create parameterized SQL statements.

Once a connection to a particular database is established, it can be used to send SQL statements
from your program to the database. The Statement interface is used to execute static SQL
statements that don’t contain any parameters. The PreparedStatement interface, extend-
ing Statement, is used to execute a precompiled SQL statement with or without parameters.
Since the SQL statements are precompiled, they are efficient for repeated executions.

A PreparedStatement object is created using the prepareStatement method in the
Connection interface. For example, the following code creates a PreparedStatement for
an SQL insert statement:

PreparedStatement preparedStatement = connection.prepareStatement
 ("insert into Student (firstName, mi, lastName) " +
 "values (?, ?, ?)");

This insert statement has three question marks as placeholders for parameters representing
values for firstName, mi, and lastName in a record of the Student table.

As a subinterface of Statement, the PreparedStatement interface inherits all the meth-
ods defined in Statement. It also provides the methods for setting parameters in the object
of PreparedStatement. These methods are used to set the values for the parameters before
executing statements or procedures. In general, the setter methods have the following name
and signature:

setX(int parameterIndex, X value);

where X is the type of the parameter, and parameterIndex is the index of the parameter
in the statement. The index starts from 1. For example, the method setString(int
parameterIndex, String value) sets a String value to the specified parameter.

The following statements pass the parameters "Jack", "A", and "Ryan" to the placeholders
for firstName, mi, and lastName in preparedStatement:

preparedStatement.setString(1, "Jack");
preparedStatement.setString(2, "A");
preparedStatement.setString(3, "Ryan");

After setting the parameters, you can execute the prepared statement by invoking execute-
Query() for a SELECT statement and executeUpdate() for a DDL or update statement.

The executeQuery() and executeUpdate() methods are similar to the ones defined
in the Statement interface except that they don’t have any parameters, because the SQL
statements are already specified in the prepareStatement method when the object of
 PreparedStatement is created.

Using a prepared SQL statement, Listing 34.2 can be improved as in Listing 34.3.

lisTing 34.3 FindGradeUsingPreparedStatement.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.HBox;
 7 import javafx.scene.layout.VBox;
 8 import javafx.stage.Stage;
 9 import java.sql.*;
10

Point
Key

M34_LIAN0182_11_SE_C34.indd 25 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-26 Chapter 34 Java Database Programming

11 public class FindGradeUsingPreparedStatement extends Application {
12 // PreparedStatement for executing queries
13 private PreparedStatement preparedStatement;
14 private TextField tfSSN = new TextField();
15 private TextField tfCourseId = new TextField();
16 private Label lblStatus = new Label();
17
18 @Override // Override the start method in the Application class
19 public void start(Stage primaryStage) {
20 // Initialize database connection and create a Statement object
21 initializeDB();
22
23 Button btShowGrade = new Button("Show Grade");
24 HBox hBox = new HBox(5);
25 hBox.getChildren().addAll(new Label("SSN"), tfSSN,
26 new Label("Course ID"), tfCourseId, (btShowGrade));
27
28 VBox vBox = new VBox(10);
29 vBox.getChildren().addAll(hBox, lblStatus);
30
31 tfSSN.setPrefColumnCount(6);
32 tfCourseId.setPrefColumnCount(6);
33 btShowGrade.setOnAction(e -> showGrade());
34
35 // Create a scene and place it in the stage
36 Scene scene = new Scene(vBox, 420, 80);
37 primaryStage.setTitle("FindGrade"); // Set the stage title
38 primaryStage.setScene(scene); // Place the scene in the stage
39 primaryStage.show(); // Display the stage
40 }
41
42 private void initializeDB() {
43 try {
44 // Load the JDBC driver
45 Class.forName("com.mysql.jdbc.Driver");
46 // Class.forName("oracle.jdbc.driver.OracleDriver");
47 System.out.println("Driver loaded");
48
49 // Establish a connection
50 Connection connection = DriverManager.getConnection
51 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
52 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
53 // "scott", "tiger");
54 System.out.println("Database connected");
55
56 String queryString = "select firstName, mi, " +
57 "lastName, title, grade from Student, Enrollment, Course " +
58 "where Student.ssn = ? and Enrollment.courseId = ? " +
59 "and Enrollment.courseId = Course.courseId";
60
61 // Create a statement
62 preparedStatement = connection.prepareStatement(queryString);
63 }
64 catch (Exception ex) {
65 ex.printStackTrace();
66 }
67 }
68
69 private void showGrade() {
70 String ssn = tfSSN.getText();

prepare statement

placeholder

connect database

load driver

M34_LIAN0182_11_SE_C34.indd 26 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.6 CallableStatement 34-27

71 String courseId = tfCourseId.getText();
72 try {
73 preparedStatement.setString(1, ssn);
74 preparedStatement.setString(2, courseId);
75 ResultSet rset = preparedStatement.executeQuery();
76
77 if (rset.next()) {
78 String lastName = rset.getString(1);
79 String mi = rset.getString(2);
80 String firstName = rset.getString(3);
81 String title = rset.getString(4);
82 String grade = rset.getString(5);
83
84 // Display result in a label
85 lblStatus.setText(firstName + " " + mi +
86 " " + lastName + "'s grade on course " + title + " is " +
87 grade);
88 } else {
89 lblStatus.setText("Not found");
90 }
91 }
92 catch (SQLException ex) {
93 ex.printStackTrace();
94 }
95 }
96 }

This example does exactly the same thing as Listing 34.2 except that it uses the prepared
statement to dynamically set the parameters. The code in this example is almost the same as
in the preceding example. The new code is highlighted.

A prepared query string is defined in lines 56–59 with ssn and courseId as parameters.
An SQL prepared statement is obtained in line 62. Before executing the query, the actual
values of ssn and courseId are set to the parameters in lines 73–74. Line 75 executes the
prepared statement.

 34.5.1 Describe prepared statements. How do you create instances of Prepared-
Statement? How do you execute a PreparedStatement? How do you set
parameter values in a PreparedStatement?

 34.5.2 What are the benefits of using prepared statements?

34.6 CallableStatement
CallableStatement enables you to execute SQL stored procedures.

The CallableStatement interface is designed to execute SQL-stored procedures. The pro-
cedures may have IN, OUT, or IN OUT parameters. An IN parameter receives a value passed
to the procedure when it is called. An OUT parameter returns a value after the procedure is
completed, but it doesn’t contain any value when the procedure is called. An IN OUT parameter
contains a value passed to the procedure when it is called and returns a value after it is com-
pleted. For example, the following procedure in Oracle PL/SQL has IN parameter p1, OUT
parameter p2, and IN OUT parameter p3:

create or replace procedure sampleProcedure
 (p1 in varchar, p2 out number, p3 in out integer) is
begin
 /* do something */
end sampleProcedure;
/

Point
Check

Point
Key

IN parameter

OUT parameter

IN OUT parameter

show result

execute statement

M34_LIAN0182_11_SE_C34.indd 27 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-28 Chapter 34 Java Database Programming

Note
The syntax of stored procedures is vendor specific. We use both Oracle and MySQL for
demonstrations of stored procedures in this book.

A CallableStatement object can be created using the prepareCall(String
call) method in the Connection interface. For example, the following code creates
a Callable Statement cstmt on Connection connection for the procedure
sampleProcedure:

CallableStatement callableStatement = connection.prepareCall(
 "{call sampleProcedure(?, ?, ?)}");

{call sampleProcedure(?, ?, ...)} is referred to as the SQL escape syntax, which
signals the driver that the code within it should be handled differently. The driver parses
the escape syntax and translates it into code that the database understands. In this exam-
ple, sampleProcedure is an Oracle procedure. The call is translated to the string begin
 sampleProcedure(?, ?, ?); end and passed to an Oracle database for execution.

You can call procedures as well as functions. The syntax to create an SQL callable state-
ment for a function is:

{? = call functionName(?, ?, ...)}

CallableStatement inherits PreparedStatement. Additionally, the Callable Statement
interface provides methods for registering the OUT parameters and for getting values from the
OUT parameters.

Before calling an SQL procedure, you need to use appropriate setter methods to pass values
to IN and IN OUT parameters, and use registerOutParameter to register OUT and IN OUT
parameters. For example, before calling procedure sampleProcedure, the following state-
ments pass values to parameters p1 (IN) and p3 (IN OUT) and register parameters p2 (OUT)
and p3 (IN OUT):

callableStatement.setString(1, "Dallas"); // Set Dallas to p1
callableStatement.setLong(3, 1); // Set 1 to p3
// Register OUT parameters
callableStatement.registerOutParameter(2, java.sql.Types.DOUBLE);
callableStatement.registerOutParameter(3, java.sql.Types.INTEGER);

You can use execute() or executeUpdate() to execute the procedure depending on the
type of SQL statement, then use getter methods to retrieve values from the OUT parameters.
For example, the next statements retrieve the values from parameters p2 and p3:

double d = callableStatement.getDouble(2);
int i = callableStatement.getInt(3);

Let us define a MySQL function that returns the number of the records in the table that
match the specified firstName and lastName in the Student table.

/* For the callable statement example. Use MySQL version 5 */
drop function if exists studentFound;

delimiter //

create function studentFound(first varchar(20), last varchar(20))
 returns int
begin
 declare result int;

 select count(*) into result

M34_LIAN0182_11_SE_C34.indd 28 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.6 CallableStatement 34-29

 from Student
 where Student.firstName = first and
 Student.lastName = last;

 return result;
end;
//

delimiter ;
/* Please note that there is a space between delimiter and ; */

If you use an Oracle database, the function can be defined as follows:

create or replace function studentFound
 (first varchar2, last varchar2)
 /* Do not name firstName and lastName. */
 return number is numberOfSelectedRows number := 0;
begin
 select count(*) into numberOfSelectedRows
 from Student
 where Student.firstName = first and
 Student.lastName = last;

 return numberOfSelectedRows;
end studentFound;
/

Suppose the function studentFound is already created in the database. Listing 34.4 gives an
example that tests this function using callable statements.

lisTing 34.4 TestCallableStatement.java
 1 import java.sql.*;
 2
 3 public class TestCallableStatement {
 4 /** Creates new form TestTableEditor */
 5 public static void main(String[] args) throws Exception {
 6 Class.forName("com.mysql.jdbc.Driver");
 7 Connection connection = DriverManager.getConnection(
 8 "jdbc:mysql://localhost/javabook",
 9 "scott", "tiger");
10 // Connection connection = DriverManager.getConnection(
11 // ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
12 // "scott", "tiger");
13
14 // Create a callable statement
15 CallableStatement callableStatement = connection.prepareCall(
16 "{? = call studentFound(?, ?)}");
17
18 java.util.Scanner input = new java.util.Scanner(System.in);
19 System.out.print("Enter student's first name: ");
20 String firstName = input.nextLine();
21 System.out.print("Enter student's last name: ");
22 String lastName = input.nextLine();
23
24 callableStatement.setString(2, firstName);
25 callableStatement.setString(3, lastName);
26 callableStatement.registerOutParameter(1, Types.INTEGER);
27 callableStatement.execute(); execute statement

register OUT parameter
set IN parameter
set IN parameter

enter lastName

enter firstName

create callable statement

connect database
load driver

M34_LIAN0182_11_SE_C34.indd 29 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-30 Chapter 34 Java Database Programming

28
29 if (callableStatement.getInt(1) >= 1)
30 System.out.println(firstName + " " + lastName +
31 " is in the database");
32 else
33 System.out.println(firstName + " " + lastName +
34 " is not in the database");
35 }
36 }

Enter student's first name: Jacob

Enter student's last name: Smith

Jacob Smith is in the database

Enter student's first name: John

Enter student's last name: Smith

John Smith is not in the database

get OUT parameter

The program loads a MySQL driver (line 6), connects to a MySQL database (lines 7–9), and
creates a callable statement for executing the function studentFound (lines 15–16).

The function’s first parameter is the return value; its second and third parameters correspond
to the first and last names. Before executing the callable statement, the program sets the first
name and last name (lines 24–25) and registers the OUT parameter (line 26). The statement is
executed in line 27.

The function’s return value is obtained in line 29. If the value is greater than or equal to 1,
the student with the specified first and last name is found in the table.

 34.6.1 Describe callable statements. How do you create instances of CallableStatement?
How do you execute a CallableStatement? How do you register OUT param-
eters in a CallableStatement?

34.7 Retrieving Metadata
The database metadata such as database URL, username, and JDBC driver name can
be obtained using the DatabaseMetaData interface and result set metadata such as
table column count and column names can be obtained using the ResultSetMetaData
interface.

JDBC provides the DatabaseMetaData interface for obtaining database-wide information,
and the ResultSetMetaData interface for obtaining information on a specific ResultSet.

34.7.1 Database Metadata
The Connection interface establishes a connection to a database. It is within the context of a
connection that SQL statements are executed and results are returned. A connection also pro-
vides access to database metadata information that describes the capabilities of the database,
supported SQL grammar, stored procedures, and so on. To obtain an instance of Database-
MetaData for a database, use the getMetaData method on a Connection object like this:

DatabaseMetaData dbMetaData = connection.getMetaData();

If your program connects to a local MySQL database, the program in Listing 34.5 displays the
database information statements shown in Figure 34.24.

Point
Check

Point
Key

database metadata

M34_LIAN0182_11_SE_C34.indd 30 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.7 Retrieving Metadata 34-31

lisTing 34.5 TestDatabaseMetaData.java
 1 import java.sql.*;
 2
 3 public class TestDatabaseMetaData {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15 DatabaseMetaData dbMetaData = connection.getMetaData();
16 System.out.println("database URL: " + dbMetaData.getURL());
17 System.out.println("database username: " +
18 dbMetaData.getUserName());
19 System.out.println("database product name: " +
20 dbMetaData.getDatabaseProductName());
21 System.out.println("database product version: " +
22 dbMetaData.getDatabaseProductVersion());
23 System.out.println("JDBC driver name: " +
24 dbMetaData.getDriverName());
25 System.out.println("JDBC driver version: " +
26 dbMetaData.getDriverVersion());
27 System.out.println("JDBC driver major version: " +
28 dbMetaData.getDriverMajorVersion());
29 System.out.println("JDBC driver minor version: " +
30 dbMetaData.getDriverMinorVersion());
31 System.out.println("Max number of connections: " +
32 dbMetaData.getMaxConnections());
33 System.out.println("MaxTableNameLength: " +
34 dbMetaData.getMaxTableNameLength());
35 System.out.println("MaxColumnsInTable: " +
36 dbMetaData.getMaxColumnsInTable());
37
38 // Close the connection
39 connection.close();
40 }
41 }

load driver

connect database

database metadata
get metadata

Figure 34.24 The DatabaseMetaData interface enables you to obtain database information.

M34_LIAN0182_11_SE_C34.indd 31 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-32 Chapter 34 Java Database Programming

34.7.2 Obtaining Database Tables
You can identify the tables in the database through database metadata using the getTables
method. Listing 34.6 displays all the user tables in the javabook database on a local MySQL
database. Figure 34.25 shows a sample output of the program.

lisTing 34.6 FindUserTables.java
 1 import java.sql.*;
 2
 3 public class FindUserTables {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15 DatabaseMetaData dbMetaData = connection.getMetaData();
16
17 ResultSet rsTables = dbMetaData.getTables(null, null, null,
18 new String[] {"TABLE"});
19 System.out.print("User tables: ");
20 while (rsTables.next())
21 System.out.print(rsTables.getString("TABLE_NAME") + " ");
22
23 // Close the connection
24 connection.close();
25 }
26 }

load driver

connect database

database metadata

obtain tables

get table names

Figure 34.25 You can find all the tables in the database.

Line 17 obtains table information in a result set using the getTables method. One of the
columns in the result set is TABLE_NAME. Line 21 retrieves the table name from this result
set column.

34.7.3 Result Set Metadata
The ResultSetMetaData interface describes information pertaining to the result set. A
ResultSetMetaData object can be used to find the types and properties of the columns in a
ResultSet. To obtain an instance of ResultSetMetaData, use the getMetaData method
on a result set like this:

ResultSetMetaData rsMetaData = resultSet.getMetaData();

M34_LIAN0182_11_SE_C34.indd 32 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34.7 Retrieving Metadata 34-33

You can use the getColumnCount() method to find the number of columns in the result and
the getColumnName(int) method to get the column names. For example, Listing 34.7 dis-
plays all the column names and contents resulting from the SQL SELECT statement select
* from Enrollment. The output is shown in Figure 34.26.

lisTing 34.7 TestResultSetMetaData.java
 1 import java.sql.*;
 2
 3 public class TestResultSetMetaData {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {
 6 // Load the JDBC driver
 7 Class.forName("com.mysql.jdbc.Driver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
13 System.out.println("Database connected");
14
15 // Create a statement
16 Statement statement = connection.createStatement();
17
18 // Execute a statement
19 ResultSet resultSet = statement.executeQuery
20 ("select * from Enrollment");
21
22 ResultSetMetaData rsMetaData = resultSet.getMetaData();
23 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
24 System.out.printf("%-12s\t", rsMetaData.getColumnName(i));
25 System.out.println();
26
27 // Iterate through the result and print the students' names
28 while (resultSet.next()) {
29 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
30 System.out.printf("%-12s\t", resultSet.getObject(i));
31 System.out.println();
32 }
33
34 // Close the connection
35 connection.close();
36 }
37 }

load driver

connect database

create statement

create result set

result set metadata
column count
column name

Figure 34.26 The ResultSetMetaData interface enables you to obtain result set
information.

M34_LIAN0182_11_SE_C34.indd 33 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-34 Chapter 34 Java Database Programming

 34.7.1 What is DatabaseMetaData for? Describe the methods in DatabaseMetaData.
How do you get an instance of DatabaseMetaData?

 34.7.2 What is ResultSetMetaData for? Describe the methods in ResultSet-
MetaData. How do you get an instance of ResultSetMetaData?

 34.7.3 How do you find the number of columns in a result set? How do you find the
 column names in a result set?

Point
Check

candidate key 34-5
database system 34-2
domain constraint 34-5
foreign key 34-5
foreign key constraint 34-5

integrity constraint 34-4
primary key 34-5
relational database 34-5
Structured Query Language (SQL) 34-6
superkey 34-5

Key Terms

ChapTer summary

1. This chapter introduced the concepts of database systems, relational databases, rela-
tional data models, data integrity, and SQL. You learned how to develop database appli-
cations using Java.

2. The Java API for developing Java database applications is called JDBC. JDBC provides
Java programmers with a uniform interface for accessing and manipulating relational
databases.

3. The JDBC API consists of classes and interfaces for establishing connections with data-
bases, sending SQL statements to databases, processing the results of SQL statements,
and obtaining database metadata.

4. Since a JDBC driver serves as the interface to facilitate communications between JDBC
and a proprietary database, JDBC drivers are database specific. If you use a driver, make
sure it is in the classpath before running the program.

5. Four key interfaces are needed to develop any database application using Java: Driver,
Connection, Statement, and ResultSet. These interfaces define a framework for
generic SQL database access. The JDBC driver vendors provide implementation for
them.

6. A JDBC application loads an appropriate driver using the Driver interface, connects
to the database using the Connection interface, creates and executes SQL statements
using the Statement interface, and processes the result using the ResultSet interface
if the statements return results.

7. The PreparedStatement interface is designed to execute dynamic SQL statements
with parameters. These SQL statements are precompiled for efficient use when repeat-
edly executed.

8. Database metadata is information that describes the database itself. JDBC provides
the DatabaseMetaData interface for obtaining database-wide information and the
ResultSetMetaData interface for obtaining information on the specific ResultSet.

M34_LIAN0182_11_SE_C34.indd 34 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 34-35

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

 *34.1 (Access and update a Staff table) Write a program that views, inserts, and updates
staff information stored in a database, as shown in Figure 34.27a. The View button
displays a record with a specified ID. The Insert button inserts a new record. The
Update button updates the record for the specified ID. The Staff table is created
as follows:

create table Staff (
 id char(9) not null,
 lastName varchar(15),
 firstName varchar(15),
 mi char(1),
 address varchar(20),
 city varchar(20),
 state char(2),
 telephone char(10),
 email varchar(40),
 primary key (id)
);

Figure 34.27 (a) The program lets you view, insert, and update staff information. (b) The PieChart and BarChart
components display the query data obtained from the data module.

(a) (b)

 **34.2 (Visualize data) Write a program that displays the number of students in each
department in a pie chart and a bar chart, as shown in Figure 34.27b. The PieChart
and BarChart classes are created in Programming Exercises 14.12 and 14.13. The
number of students for each department can be obtained from the Student table
(see Figure 34.4) using the following SQL statement:

select deptId, count(*)
from Student
where deptId is not null
group by deptId;

 *34.3 (Connection dialog) Develop a subclass of BorderPane named DBConnection-
Pane that enables the user to select or enter a JDBC driver and a URL and to enter
a username and password, as shown in Figure 34.28. When the Connect to DB but-
ton is clicked, a Connection object for the database is stored in the connection
property. You can then use the getConnection() method to return the connection.

M34_LIAN0182_11_SE_C34.indd 35 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-36 Chapter 34 Java Database Programming

 *34.4 (Find grades) Listing 34.2, FindGrade.java, presented a program that finds a stu-
dent’s grade for a specified course. Rewrite the program to find all the grades for
a specified student, as shown in Figure 34.29.

Figure 34.29 The program displays the grades for the courses for a specified student.

Figure 34.30 (a) Enter a table name to display the table contents. (b) Select a table name from the combo box to
 display its contents.

(a) (b)

Figure 34.28 The DBConnectionPane component enables the user to enter database information.

 *34.5 (Display table contents) Write a program that displays the content for a given table.
As shown in Figure 34.30a, you enter a table and click the Show Contents button
to display the table contents in the text area.

 *34.6 (Find tables and showing their contents) Write a program that fills in table names
in a combo box, as shown in Figure 34.30b. You can select a table from the combo
box to display its contents in the text area.

 **34.7 (Populate Quiz table) Create a table named Quiz as follows:

create table Quiz(
 questionId int,
 question varchar(4000),
 choicea varchar(1000),

M34_LIAN0182_11_SE_C34.indd 36 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 34-37

 choiceb varchar(1000),
 choicec varchar(1000),
 choiced varchar(1000),
 answer varchar(5));

The Quiz table stores multiple-choice questions. Suppose the multiple-choice
questions are stored in a text file accessible from http://www.cs.armstrong.edu/
liang/data/Quiz.txt in the following format:

1. question1
a. choice a
b. choice b
c. choice c
d. choice d
Answer:cd

2. question2
a. choice a
b. choice b
c. choice c
d. choice d
Answer:a

...

Write a program that reads the data from the file and populate it into the Quiz
table.

 *34.8 (Populate Salary table) Create a table named Salary as follows:

create table Salary(
 firstName varchar(100),
 lastName varchar(100),
 rank varchar(15),
 salary float);

Obtain the data for salary from http://cs.armstrong.edu/liang/data/Salary.txt and
populate it into the Salary table in the database.

 *34.9 (Copy table) Suppose the database contains a student table defined as follows:

create table Student1 (
 username varchar(50) not null,
 password varchar(50) not null,
 fullname varchar(200) not null,
 constraint pkStudent primary key (username)
);

Create a new table named Student2 as follows:

create table Student2 (
 username varchar(50) not null,
 password varchar(50) not null,
 firstname varchar(100),
 lastname varchar(100),
 constraint pkStudent primary key (username)
);

A full name is in the form of firstname mi lastname or firstname last-
name. For example, John K Smith is a full name. Write a program that copies

M34_LIAN0182_11_SE_C34.indd 37 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

34-38 Chapter 34 Java Database Programming

table Student1 into Student2. Your task is to split a full name into first-
name, mi, and lastname for each record in Student1 and store a new record
into Student2.

 *34.10 (Record unsubmitted exercises) The following three tables store information on
students, assigned exercises, and exercise submission in LiveLab. LiveLab is an
automatic grading system for grading programming exercises.

create table AGSStudent (
 username varchar(50) not null,
 password varchar(50) not null,
 fullname varchar(200) not null,
 instructorEmail varchar(100) not null,
 constraint pkAGSStudent primary key (username)
);

 create table ExerciseAssigned (
 instructorEmail varchar(100),
 exerciseName varchar(100),
 maxscore double default 10,
 constraint pkCustomExercise primary key
 (instructorEmail, exerciseName)
);

create table AGSLog (
 username varchar(50), /* This is the student's user name */
 exerciseName varchar(100), /* This is the exercise */
 score double default null,
 submitted bit default 0,
 constraint pkLog primary key (username, exerciseName)
);

The AGSStudent table stores the student information. The ExerciseAssigned
table assigns the exercises by an instructor. The AGSLog table stores the grading
results. When a student submits an exercise, a record is stored in the AGSLog table.
However, there is no record in AGSLog if a student did not submit the exercise.

Write a program that adds a new record for each student and an assigned exercise
to the student in the AGSLog table if a student has not submitted the exercise. The
record should have 0 on score and submitted. For example, if the tables contain
the following data in AGSLog before you run this program, the AGSLog table now
contains the new records after the program runs.

AGSStudent

username password fullname instructorEmail

abc p1 John Roo t@gmail.com
cde p2 Yao Mi c@gmail.com
wbc p3 F3 t@gmail.com

ExerciseAssigned

instructorEmail exerciseName maxScore

t@gmail.com e1 10
t@gmail.com e2 10
c@gmail.com e1 4
c@gmail.com e4 20

M34_LIAN0182_11_SE_C34.indd 38 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Programming Exercises 34-39

AGSLog

username exerciseName score submitted

abc e1 9 1
wbc e2 7 1

AGSLog after the program runs

username exerciseName score submitted

abc e1 9 1
wbc e2 7 1
abc e2 0
wbc e1 0
cde e1 0
cde e4 0

 *34.11 (Baby names) Create the following table:

create table Babyname (
 year integer,
 name varchar(50),
 gender char(1),
 count integer,
 constraint pkBabyname primary key (year, name, gender)
);

The baby name ranking data was described in Programming Exercise 12.31. Write
a program to read data from the following URL and store into the Babyname table.
https://liveexample.pearsoncmg.com/data/babynamesranking2001.txt,

. . .

https://liveexample.pearsoncmg.com/data/babynamesranking2010.txt.

M34_LIAN0182_11_SE_C34.indd 39 5/29/17 9:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To create a universal SQL client for accessing local or remote database

(§35.2).

■■ To execute SQL statements in a batch mode (§35.3).

■■ To process updatable and scrollable result sets (§35.4).

■■ To simplify Java database programming using RowSet (§35.5).

■■ To store and retrieve images in JDBC (§35.6).

Advanced
Java Database
Programming

CHAPTER

35

M35_LIAN0182_11_SE_C35.indd 1 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-2 Chapter 35 Advanced Java Database Programming

35.1 Introduction
This chapter introduces advanced features for Java database programming.

Chapter 34 introduced JDBC’s basic features. This chapter covers its advanced features. You
will learn how to develop a universal SQL client for accessing any local or remote relational
database, learn how to execute statements in a batch mode to improve performance, learn scrol-
lable result sets and how to update a database through result sets, learn how to use RowSet to
simplify database access, and learn how to store and retrieve images.

35.2 A Universal SQL Client
This section develops a universal SQL client for connecting and accessing any SQL database.

In Chapter 34, you used various drivers to connect to the database, created statements for
executing SQL statements, and processed the results from SQL queries. This section presents
a universal SQL client that enables you to connect to any relational database and execute SQL
commands interactively, as shown in Figure 35.1. The client can connect to any JDBC data
source and can submit SQL SELECT commands and non-SELECT commands for execution.
The execution result is displayed for the SELECT queries, and the execution status is displayed
for the non-SELECT commands. Listing 35.1 gives the program.

Point
Key

Point
Key

Figure 35.1 You can connect to any JDBC data source and execute SQL commands
interactively.

Listing 35.1 SQLClient.java
 1 import java.sql.*;
 2 import javafx.application.Application;
 3 import javafx.collections.FXCollections;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.ComboBox;
 8 import javafx.scene.control.Label;
 9 import javafx.scene.control.PasswordField;
 10 import javafx.scene.control.ScrollPane;
 11 import javafx.scene.control.TextArea;
 12 import javafx.scene.control.TextField;
 13 import javafx.scene.layout.BorderPane;
 14 import javafx.scene.layout.GridPane;
 15 import javafx.scene.layout.HBox;
 16 import javafx.scene.layout.VBox;

M35_LIAN0182_11_SE_C35.indd 2 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.2 A Universal SQL Client 35-3

 17 import javafx.stage.Stage;
 18
 19 public class SQLClient extends Application {
 20 // Connection to the database
 21 private Connection connection;
 22
 23 // Statement to execute SQL commands
 24 private Statement statement;
 25
 26 // Text area to enter SQL commands
 27 private TextArea tasqlCommand = new TextArea();
 28
 29 // Text area to display results from SQL commands
 30 private TextArea taSQLResult = new TextArea();
 31
 32 // DBC info for a database connection
 33 private TextField tfUsername = new TextField();
 34 private PasswordField pfPassword = new PasswordField();
 35 private ComboBox<String> cboURL = new ComboBox<>();
 36 private ComboBox<String> cboDriver = new ComboBox<>();
 37
 38 private Button btExecuteSQL = new Button("Execute SQL Command");
 39 private Button btClearSQLCommand = new Button("Clear");
 40 private Button btConnectDB = new Button("Connect to Database");
 41 private Button btClearSQLResult = new Button("Clear Result");
 42 private Label lblConnectionStatus
 43 = new Label("No connection now");
 44
 45 @Override // Override the start method in the Application class
 46 public void start(Stage primaryStage) {
 47 cboURL.getItems().addAll(FXCollections.observableArrayList(
 48 "jdbc:mysql://localhost/javabook",
 49 "jdbc:mysql://liang.armstrong.edu/javabook",
 50 "jdbc:odbc:exampleMDBDataSource",
 51 "jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl"));
 52 cboURL.getSelectionModel().selectFirst();
 53
 54 cboDriver.getItems().addAll(FXCollections.observableArrayList(
 55 "com.mysql.jdbc.Driver", "sun.jdbc.odbc.dbcOdbcDriver",
 56 "oracle.jdbc.driver.OracleDriver"));
 57 cboDriver.getSelectionModel().selectFirst();
 58
 59 // Create UI for connecting to the database
 60 GridPane gridPane = new GridPane();
 61 gridPane.add(cboURL, 1, 0);
 62 gridPane.add(cboDriver, 1, 1);
 63 gridPane.add(tfUsername, 1, 2);
 64 gridPane.add(pfPassword, 1, 3);
 65 gridPane.add(new Label("JDBC Driver"), 0, 0);
 66 gridPane.add(new Label("Database URL"), 0, 1);
 67 gridPane.add(new Label("Username"), 0, 2);
 68 gridPane.add(new Label("Password"), 0, 3);
 69
 70 HBox hBoxConnection = new HBox();
 71 hBoxConnection.getChildren().addAll(
 72 lblConnectionStatus, btConnectDB);
 73 hBoxConnection.setAlignment(Pos.CENTER_RIGHT);
 74
 75 VBox vBoxConnection = new VBox(5);
 76 vBoxConnection.getChildren().addAll(
 77 new Label("Enter Database Information"),

M35_LIAN0182_11_SE_C35.indd 3 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-4 Chapter 35 Advanced Java Database Programming

 78 gridPane, hBoxConnection);
 79
 80 gridPane.setStyle("-fx-border-color: black;");
 81
 82 HBox hBoxSQLCommand = new HBox(5);
 83 hBoxSQLCommand.getChildren().addAll(
 84 btClearSQLCommand, btExecuteSQL);
 85 hBoxSQLCommand.setAlignment(Pos.CENTER_RIGHT);
 86
 87 BorderPane borderPaneSqlCommand = new BorderPane();
 88 borderPaneSqlCommand.setTop(
 89 new Label("Enter an SQL Command"));
 90 borderPaneSqlCommand.setCenter(
 91 new ScrollPane(tasqlCommand));
 92 borderPaneSqlCommand.setBottom(
 93 hBoxSQLCommand);
 94
 95 HBox hBoxConnectionCommand = new HBox(10);
 96 hBoxConnectionCommand.getChildren().addAll(
 97 vBoxConnection, borderPaneSqlCommand);
 98
 99 BorderPane borderPaneExecutionResult = new BorderPane();
100 borderPaneExecutionResult.setTop(
101 new Label("SQL Execution Result"));
102 borderPaneExecutionResult.setCenter(taSQLResult);
103 borderPaneExecutionResult.setBottom(btClearSQLResult);
104
105 BorderPane borderPane = new BorderPane();
106 borderPane.setTop(hBoxConnectionCommand);
107 borderPane.setCenter(borderPaneExecutionResult);
108
109 // Create a scene and place it in the stage
110 Scene scene = new Scene(borderPane, 670, 400);
111 primaryStage.setTitle("SQLClient"); // Set the stage title
112 primaryStage.setScene(scene); // Place the scene in the stage
113 primaryStage.show(); // Display the stage
114
115 btConnectDB.setOnAction(e -> connectToDB());
116 btExecuteSQL.setOnAction(e -> executeSQL());
117 btClearSQLCommand.setOnAction(e -> tasqlCommand.setText(null));
118 btClearSQLResult.setOnAction(e -> taSQLResult.setText(null));
119 }
120
121 /** Connect to DB */
122 private void connectToDB() {
123 // Get database information from the user input
124 String driver = cboDriver
125 .getSelectionModel().getSelectedItem();
126 String url = cboURL.getSelectionModel().getSelectedItem();
127 String username = tfUsername.getText().trim();
128 String password = pfPassword.getText().trim();
129
130 // Connection to the database
131 try {
132 Class.forName(driver);
133 connection = DriverManager.getConnection(
134 url, username, password);
135 lblConnectionStatus.setText("Connected to " + url);
136 }
137 catch (java.lang.Exception ex) {
138 ex.printStackTrace();

M35_LIAN0182_11_SE_C35.indd 4 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.2 A Universal SQL Client 35-5

139 }
140 }
141
142 /** Execute SQL commands */
143 private void executeSQL() {
144 if (connection == null) {
145 taSQLResult.setText("Please connect to a database first");
146 return;
147 }
148 else {
149 String sqlCommands = tasqlCommand.getText().trim();
150 String[] commands = sqlCommands.replace('\n', ' ').split(";");
151
152 for (String aCommand: commands) {
153 if (aCommand.trim().toUpperCase().startsWith("SELECT")) {
154 processSQLSelect(aCommand);
155 }
156 else {
157 processSQLNonSelect(aCommand);
158 }
159 }
160 }
161 }
162
163 /** Execute SQL SELECT commands */
164 private void processSQLSelect(String sqlCommand) {
165 try {
166 // Get a new statement for the current connection
167 statement = connection.createStatement();
168
169 // Execute a SELECT SQL command
170 ResultSet resultSet = statement.executeQuery(sqlCommand);
171
172 // Find the number of columns in the result set
173 int columnCount = resultSet.getMetaData().getColumnCount();
174 String row = "";
175
176 // Display column names
177 for (int i = 1; i <= columnCount; i++) {
178 row += resultSet.getMetaData().getColumnName(i) + "\t";
179 }
180
181 taSQLResult.appendText(row + '\n');
182
183 while (resultSet.next()) {
184 // Reset row to empty
185 row = "";
186
187 for (int i = 1; i <= columnCount; i++) {
188 // A non-String column is converted to a string
189 row += resultSet.getString(i) + "\t";
190 }
191
192 taSQLResult.appendText(row + '\n');
193 }
194 }
195 catch (SQLException ex) {
196 taSQLResult.setText(ex.toString());
197 }
198 }
199

M35_LIAN0182_11_SE_C35.indd 5 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-6 Chapter 35 Advanced Java Database Programming

200 /** Execute SQL DDL, and modification commands */
201 private void processSQLNonSelect(String sqlCommand) {
202 try {
203 // Get a new statement for the current connection
204 statement = connection.createStatement();
205
206 // Execute a non-SELECT SQL command
207 statement.executeUpdate(sqlCommand);
208
209 taSQLResult.setText("SQL command executed");
210 }
211 catch (SQLException ex) {
212 taSQLResult.setText(ex.toString());
213 }
214 }
215 }

The user selects or enters the JDBC driver, database URL, username, and password, and clicks
the Connect to Database button to connect to the specified database using the connectToDB()
method (lines 122–140).

When the user clicks the Execute SQL Command button, the executeSQL() method is
invoked (lines 143–161) to get the SQL commands from the text area (jtaSQLCommand) and
extract each command separated by a semicolon (;). It then determines whether the com-
mand is a SELECT query or a DDL or data modification statement (lines 153–158). If the
command is a SELECT query, the processSQLSelect method is invoked (lines 164–198).
This method uses the executeQuery method (line 170) to obtain the query result. The result
is displayed in the text area jtaSQLResult (line 181). If the command is a non-SELECT
query, the processSQLNonSelect() method is invoked (lines 201–214). This method uses
the executeUpdate method (line 207) to execute the SQL command.

The getMetaData method (lines 173, 178) in the ResultSet interface is used to obtain
an instance of ResultSetMetaData. The getColumnCount method (line 173) returns the
number of columns in the result set, and the getColumnName(i) method (line 178) returns
the column name for the ith column.

35.3 Batch Processing
You can send a batch of SQL statements to the database for execution at once to
improve efficiency.

In all the preceding examples, SQL commands are submitted to the database for execution
one at a time. This is inefficient for processing a large number of updates. For example,
suppose you wanted to insert a thousand rows into a table. Submitting one INSERT com-
mand at a time would take nearly a thousand times longer than submitting all the INSERT
commands in a batch at once. To improve performance, JDBC introduced the batch update
for processing nonselect SQL commands. A batch update consists of a sequence of nonselect
SQL commands. These commands are collected in a batch and submitted to the database
all together.

To use the batch update, you add nonselect commands to a batch using the addBatch
method in the Statement interface. After all the SQL commands are added to the batch, use
the executeBatch method to submit the batch to the database for execution.

For example, the following code adds a create table command, adds two insert statements
in a batch, and executes the batch:

Statement statement = connection.createStatement();

// Add SQL commands to the batch
statement.addBatch("create table T (C1 integer, C2 varchar(15))");

Point
Key

M35_LIAN0182_11_SE_C35.indd 6 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.3 Batch Processing 35-7

statement.addBatch("insert into T values (100, 'Smith')");
statement.addBatch("insert into T values (200, 'Jones')");

// Execute the batch
int count[] = statement.executeBatch();

The executeBatch() method returns an array of counts, each of which counts the number of
rows affected by the SQL command. The first count returns 0 because it is a DDL command.
The other counts return 1 because only one row is affected.

Note
To find out whether a driver supports batch updates, invoke supportsBatchUpdates()
on a DatabaseMetaData instance. If the driver supports batch updates, it will return
true. The JDBC drivers for MySQL, Access, and Oracle all support batch updates.

To demonstrate batch processing, consider writing a program that gets data from a text file and
copies the data from the text file to a table, as shown in Figure 35.2. The text file consists of
lines that each corresponds to a row in the table. The fields in a row are separated by commas.
The string values in a row are enclosed in single quotes. You can view the text file by clicking
the View File button and copy the text to the table by clicking the Copy button. The table must
already be defined in the database. Figure 35.2 shows the text file table.txt copied to table
Person. Person is created using the following statement:

create table Person (
 firstName varchar(20),
 mi char(1),
 lastName varchar(20)
)

Figure 35.2 The CopyFileToTable utility copies text files to database tables.

Listing 35.2 gives the solution to the problem.

Listing 35.2 CopyFileToTable.java
 1 import java.io.File;
 2 import java.io.FileNotFoundException;
 3 import java.io.IOException;
 4 import java.sql.*;
 5 import java.util.Scanner;
 6 import javafx.application.Application;
 7 import javafx.collections.FXCollections;
 8 import javafx.geometry.Pos;
 9 import javafx.scene.Scene;
 10 import javafx.scene.control.Button;
 11 import javafx.scene.control.ComboBox;
 12 import javafx.scene.control.Label;
 13 import javafx.scene.control.PasswordField;
 14 import javafx.scene.control.SplitPane;

M35_LIAN0182_11_SE_C35.indd 7 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-8 Chapter 35 Advanced Java Database Programming

 15 import javafx.scene.control.TextArea;
 16 import javafx.scene.control.TextField;
 17 import javafx.scene.layout.BorderPane;
 18 import javafx.scene.layout.GridPane;
 19 import javafx.scene.layout.HBox;
 20 import javafx.scene.layout.VBox;
 21 import javafx.stage.Stage;
 22
 23 public class CopyFileToTable extends Application {
 24 // Text file info
 25 private TextField tfFilename = new TextField();
 26 private TextArea taFile = new TextArea();
 27
 28 // JDBC and table info
 29 private ComboBox<String> cboURL = new ComboBox<>();
 30 private ComboBox<String> cboDriver = new ComboBox<>();
 31 private TextField tfUsername = new TextField();
 32 private PasswordField pfPassword = new PasswordField();
 33 private TextField tfTableName = new TextField();
 34
 35 private Button btViewFile = new Button("View File");
 36 private Button btCopy = new Button("Copy");
 37 private Label lblStatus = new Label();
 38
 39 @Override // Override the start method in the Application class
 40 public void start(Stage primaryStage) {
 41 cboURL.getItems().addAll(FXCollections.observableArrayList(
 42 "jdbc:mysql://localhost/javabook",
 43 "jdbc:mysql://liang.armstrong.edu/javabook",
 44 "jdbc:odbc:exampleMDBDataSource",
 45 "jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl"));
 46 cboURL.getSelectionModel().selectFirst();
 47
 48 cboDriver.getItems().addAll(FXCollections.observableArrayList(
 49 "com.mysql.jdbc.Driver", "sun.jdbc.odbc.dbcOdbcDriver",
 50 "oracle.jdbc.driver.OracleDriver"));
 51 cboDriver.getSelectionModel().selectFirst();
 52
 53 // Create UI for connecting to the database
 54 GridPane gridPane = new GridPane();
 55 gridPane.add(new Label("JDBC Driver"), 0, 0);
 56 gridPane.add(new Label("Database URL"), 0, 1);
 57 gridPane.add(new Label("Username"), 0, 2);
 58 gridPane.add(new Label("Password"), 0, 3);
 59 gridPane.add(new Label("Table Name"), 0, 4);
 60 gridPane.add(cboURL, 1, 0);
 61 gridPane.add(cboDriver, 1, 1);
 62 gridPane.add(tfUsername, 1, 2);
 63 gridPane.add(pfPassword, 1, 3);
 64 gridPane.add(tfTableName, 1, 4);
 65
 66 HBox hBoxConnection = new HBox(10);
 67 hBoxConnection.getChildren().addAll(lblStatus, btCopy);
 68 hBoxConnection.setAlignment(Pos.CENTER_RIGHT);
 69
 70 VBox vBoxConnection = new VBox(5);
 71 vBoxConnection.getChildren().addAll(
 72 new Label("Target Database Table"),
 73 gridPane, hBoxConnection);
 74
 75 gridPane.setStyle("-fx-border-color: black;");

M35_LIAN0182_11_SE_C35.indd 8 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.3 Batch Processing 35-9

 76
 77 BorderPane borderPaneFileName = new BorderPane();
 78 borderPaneFileName.setLeft(new Label("Filename"));
 79 borderPaneFileName.setCenter(tfFilename);
 80 borderPaneFileName.setRight(btViewFile);
 81
 82 BorderPane borderPaneFileContent = new BorderPane();
 83 borderPaneFileContent.setTop(borderPaneFileName);
 84 borderPaneFileContent.setCenter(taFile);
 85
 86 BorderPane borderPaneFileSource = new BorderPane();
 87 borderPaneFileSource.setTop(new Label("Source Text File"));
 88 borderPaneFileSource.setCenter(borderPaneFileContent);
 89
 90 SplitPane sp = new SplitPane();
 91 sp.getItems().addAll(borderPaneFileSource, vBoxConnection);
 92
 93 // Create a scene and place it in the stage
 94 Scene scene = new Scene(sp, 680, 230);
 95 primaryStage.setTitle("CopyFileToTable"); // Set the stage title
 96 primaryStage.setScene(scene); // Place the scene in the stage
 97 primaryStage.show(); // Display the stage
 98
 99 btViewFile.setOnAction(e -> showFile());
100 btCopy.setOnAction(e -> {
101 try {
102 copyFile();
103 }
104 catch (Exception ex) {
105 lblStatus.setText(ex.toString());
106 }
107 });
108 }
109
110 /** Display the file in the text area */
111 private void showFile() {
112 Scanner input = null;
113 try {
114 // Use a Scanner to read text from the file
115 input = new Scanner(new File(tfFilename.getText().trim()));
116
117 // Read a line and append the line to the text area
118 while (input.hasNext())
119 taFile.appendText(input.nextLine() + '\n');
120 }
121 catch (FileNotFoundException ex) {
122 System.out.println("File not found: " + tfFilename.getText());
123 }
124 catch (IOException ex) {
125 ex.printStackTrace();
126 }
127 finally {
128 if (input != null) input.close();
129 }
130 }
131
132 private void copyFile() throws Exception {
133 // Load the JDBC driver
134 Class.forName(cboDriver.getSelectionModel()
135 .getSelectedItem().trim());
136 System.out.println("Driver loaded");

M35_LIAN0182_11_SE_C35.indd 9 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-10 Chapter 35 Advanced Java Database Programming

137
138 // Establish a connection
139 Connection conn = DriverManager.getConnection(
140 cboURL.getSelectionModel().getSelectedItem().trim(),
141 tfUsername.getText().trim(),
142 String.valueOf(pfPassword.getText()).trim());
143 System.out.println("Database connected");
144
145 // Read each line from the text file and insert it to the table
146 insertRows(conn);
147 }
148
149 private void insertRows(Connection connection) {
150 // Build the SQL INSERT statement
151 String sqlInsert = "insert into " + tfTableName.getText()
152 + " values (";
153
154 // Use a Scanner to read text from the file
155 Scanner input = null;
156
157 // Get file name from the text field
158 String filename = tfFilename.getText().trim();
159
160 try {
161 // Create a scanner
162 input = new Scanner(new File(filename));
163
164 // Create a statement
165 Statement statement = connection.createStatement();
166
167 System.out.println("Driver major version? " +
168 connection.getMetaData().getDriverMajorVersion());
169
170 // Determine if batchUpdatesSupported is supported
171 boolean batchUpdatesSupported = false;
172
173 try {
174 if (connection.getMetaData().supportsBatchUpdates()) {
175 batchUpdatesSupported = true;
176 System.out.println("batch updates supported");
177 }
178 else {
179 System.out.println("The driver " +
180 "does not support batch updates");
181 }
182 }
183 catch (UnsupportedOperationException ex) {
184 System.out.println("The operation is not supported");
185 }
186
187 // Determine if the driver is capable of batch updates
188 if (batchUpdatesSupported) {
189 // Read a line and add the insert table command to the batch
190 while (input.hasNext()) {
191 statement.addBatch(sqlInsert + input.nextLine() + ")");
192 }
193
194 statement.executeBatch();
195
196 lblStatus.setText("Batch updates completed");
197 }

M35_LIAN0182_11_SE_C35.indd 10 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.4 Scrollable and Updatable Result Set 35-11

198 else {
199 // Read a line and execute insert table command
200 while (input.hasNext()) {
201 statement.executeUpdate(sqlInsert + input.nextLine() + ")");
202 }
203
204 lblStatus.setText("Single row update completed");
205 }
206 }
207 catch (SQLException ex) {
208 System.out.println(ex);
209 }
210 catch (FileNotFoundException ex) {
211 System.out.println("File not found: " + filename);
212 }
213 finally {
214 if (input != null) input.close();
215 }
216 }
217 }

The insertRows method (lines 149–216) uses the batch updates to submit SQL INSERT
commands to the database for execution, if the driver supports batch updates. Lines 174–181
check whether the driver supports batch updates. If the driver does not support the opera-
tion, an UnsupportedOperationException exception will be thrown (line 183) when the
 supportsBatchUpdates() method is invoked.

The tables must already be created in the database. The file format and contents must match
the database table specification. Otherwise, the SQL INSERT command will fail.

In Exercise 35.1, you will write a program to insert a thousand records to a database and
compare the performance with and without batch updates.

 35.3.1 What is batch processing in JDBC? What are the benefits of using batch processing?

 35.3.2 How do you add an SQL statement to a batch? How do you execute a batch?

 35.3.3 Can you execute a SELECT statement in a batch?

 35.3.4 How do you know whether a JDBC driver supports batch updates?

35.4 Scrollable and Updatable Result Set
You can use scrollable and updatable result set to move the cursor anywhere in the
result set to perform insertion, deletion, and update.

The result sets used in the preceding examples are read sequentially. A result set maintains a
cursor pointing to its current row of data. Initially the cursor is positioned before the first row.
The next() method moves the cursor forward to the next row. This is known as sequential
forward reading.

A more powerful way of accessing database is to use a scrollable and updatable result,
which enables you to scroll the rows both forward and backward and move the cursor to a
desired location using the first, last, next, previous, absolute, or relative method.
Additionally, you can insert, delete, or update a row in the result set and have the changes
automatically reflected in the database.

To obtain a scrollable or updatable result set, you must first create a statement with an
appropriate type and concurrency mode. For a static statement, use

Statement statement = connection.createStatement
 (int resultSetType, int resultSetConcurrency);

Point
Check

Point
Key

M35_LIAN0182_11_SE_C35.indd 11 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-12 Chapter 35 Advanced Java Database Programming

For a prepared statement, use

PreparedStatement statement = connection.prepareStatement
 (String sql, int resultSetType, int resultSetConcurrency);

The possible values of resultSetType are the constants defined in the ResultSet:

■■ TYPE_FORWARD_ONLY: The result set is accessed forward sequentially.

■■ TYPE_SCROLL_INSENSITIVE: The result set is scrollable, but not sensitive to
changes in the database.

■■ TYPE_SCROLL_SENSITIVE: The result set is scrollable and sensitive to changes
made by others. Use this type if you want the result set to be scrollable and updatable.

The possible values of resultSetConcurrency are the constants defined in the
ResultSet:

■■ CONCUR_READ_ONLY: The result set cannot be used to update the database.

■■ CONCUR_UPDATABLE: The result set can be used to update the database.

For example, if you want the result set to be scrollable and updatable, you can create a
statement, as follows:

Statement statement = connection.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE)

You use the executeQuery method in a Statement object to execute an SQL query that
returns a result set as follows:

ResultSet resultSet = statement.executeQuery(query);

You can now use the methods first(), next(), previous(), and last() to move
the cursor to the first row, next row, previous row, and last row. The absolute(int row)
method moves the cursor to the specified row; and the getXxx(int columnIndex) or
getXxx(String columnName) method is used to retrieve the value of a specified field at the
current row. The methods insertRow(), deleteRow(), and updateRow() can also be used
to insert, delete, and update the current row. Before applying insertRow or updateRow, you
need to use the method updateXxx(int columnIndex, Xxx value) or update(String
columnName, Xxx value) to write a new value to the field at the current row. The cancel-
RowUpdates() method cancels the updates made to a row. The close() method closes the
result set and releases its resource. The wasNull() method returns true if the last column read
had a value of SQL NULL.

Listing 35.3 gives an example that demonstrates how to create a scrollable and updatable
result set. The program creates a result set for the StateCapital table. The StateCapital
table is defined as follows:

create table StateCapital (
 state varchar(40),
 capital varchar(40)
);

Listing 35.3 ScrollUpdateResultSet.java
 1 import java.sql.*;
 2
 3 public class ScrollUpdateResultSet {
 4 public static void main(String[] args)
 5 throws SQLException, ClassNotFoundException {

M35_LIAN0182_11_SE_C35.indd 12 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.4 Scrollable and Updatable Result Set 35-13

 6 // Load the JDBC driver
 7 Class.forName("oracle.jdbc.driver.OracleDriver");
 8 System.out.println("Driver loaded");
 9
10 // Connect to a database
11 Connection connection = DriverManager.getConnection
12 ("jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl",
13 "scott", "tiger");
14 connection.setAutoCommit(true);
15 System.out.println("Database connected");
16
17 // Get a new statement for the current connection
18 Statement statement = connection.createStatement(
19 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
20
21 // Get ResultSet
22 ResultSet resultSet = statement.executeQuery
23 ("select state, capital from StateCapital");
24
25 System.out.println("Before update ");
26 displayResultSet(resultSet);
27
28 // Update the second row
29 resultSet.absolute(2); // Move cursor to the second row
30 resultSet.updateString("state", "New S"); // Update the column
31 resultSet.updateString("capital", "New C"); // Update the column
32 resultSet.updateRow(); // Update the row in the data source
33
34 // Insert after the last row
35 resultSet.last();
36 resultSet.moveToInsertRow(); // Move cursor to the insert row
37 resultSet.updateString("state", "Florida");
38 resultSet.updateString("capital", "Tallahassee");
39 resultSet.insertRow(); // Insert the row
40 resultSet.moveToCurrentRow(); // Move the cursor to the current row
41
42 // Delete fourth row
43 resultSet.absolute(4); // Move cursor to the 5th row
44 resultSet.deleteRow(); // Delete the second row
45
46 System.out.println("After update ");
47 resultSet = statement.executeQuery
48 ("select state, capital from StateCapital");
49 displayResultSet(resultSet);
50
51 // Close the connection
52 resultSet.close();
53 }
54
55 private static void displayResultSet(ResultSet resultSet)
56 throws SQLException {
57 ResultSetMetaData rsMetaData = resultSet.getMetaData();
58 resultSet.beforeFirst();
59 while (resultSet.next()) {
60 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
61 System.out.printf("%-12s\t", resultSet.getObject(i));
62 System.out.println();
63 }
64 }
65 }

M35_LIAN0182_11_SE_C35.indd 13 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-14 Chapter 35 Advanced Java Database Programming

The code in lines 18–19 creates a Statement for producing scrollable and updatable result sets.
The program moves the cursor to the second row in the result set (line 29), updates two

columns in this row (lines 30–31), and invokes the updateRow() method to update the row
in the underlying database (line 32).

An updatable ResultSet object has a special row associated with it that serves as a staging
area for building a row to be inserted. This special row is called the insert row. To insert a row,
first invoke the moveToInsertRow() method to move the cursor to the insert row (line 36),
then update the columns using the updateXxx method (lines 37–38), and finally insert the row
using the insertRow() method (line 39). Invoking moveToCurrentRow()moves the cursor
to the current inserted row (lines 40).

The program moves to the fourth row and invokes the deleteRow()method to delete the
row from the database (lines 43–44).

Note
Not all current drivers support scrollable and updatable result sets. The example is tested
using Oracle ojdbc6 driver. You can use supportsResultSetType(int type) and
supportsResultSetConcurrency(int type, int concurrency) in the
DatabaseMetaData interface to find out which result type and currency modes are
supported by the JDBC driver. But even if a driver supports the scrollable and updatable
result set, a result set for a complex query might not be able to perform an update. For
example, the result set for a query that involves several tables is likely not to support
update operations.

Note
The program may not work due to an issue in the Oracle JDBC driver if lines 22–23 are
replaced by

ResultSet resultSet = statement.executeQuery
 ("select * from StateCapital");

 35.4.1 What is a scrollable result set? What is an updatable result set?

 35.4.2 How do you create a scrollable and updatable ResultSet?

 35.4.3 How do you know whether a JDBC driver supports a scrollable and updatable
ResultSet?

Point
Check

Driver loaded
Database connected

Before update
Indiana Indianapolis
Illinois Springfield
California Sacramento
Georgia Atlanta
Texas Austin

After update
Indiana Indianapolis
New S New C
California Sacramento
Texas Austin
Florida Tallahassee

M35_LIAN0182_11_SE_C35.indd 14 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.5 RowSet, JdbcRowSet, and CachedRowSet 35-15

35.5 RowSet, JdbcRowSet, and CachedRowSet
The RowSet interface can be used to simplify database programming.

The RowSet interface extends java.sql.ResultSet with additional capabilities that allow
a RowSet instance to be configured to connect to a JDBC url, username, and password, set an
SQL command, execute the command, and retrieve the execution result. In essence, it com-
bines Connection, Statement, and ResultSet into one interface.

Note
Not all JDBC drivers support RowSet. Currently, the JDBC-ODBC driver does not sup-
port all features of RowSet.

35.5.1 RowSet Basics
There are two types of RowSet objects: connected and disconnected. A connected RowSet
object makes a connection with a data source and maintains that connection throughout its
life cycle. A disconnected RowSet object makes a connection with a data source, executes a
query to get data from the data source, and then closes the connection. A disconnected rowset
may make changes to its data while it is disconnected and then send the changes back to the
original source of the data, but it must reestablish a connection to do so.

There are several versions of RowSet. Two frequently used are JdbcRowSet and Cached-
RowSet. Both are subinterfaces of RowSet. JdbcRowSet is connected, while CachedRowSet
is disconnected. Also, JdbcRowSet is neither serializable nor cloneable, while CachedRowSet
is both. The database vendors are free to provide concrete implementations for these inter-
faces. Oracle has provided the reference implementation JdbcRowSetImpl for JdbcRowSet
and CachedRowSetImpl for CachedRowSet. Figure 35.3 shows the relationship of these
components.

Point
Key

Figure 35.3 The JdbcRowSetImpl and CachedRowSetImpl are concrete implementa-
tions of RowSet.

«interface»
java.sql.ResultSet

«interface»
javax.sql.RowSet

«interface»
javax.sql.rowset.JdbcRowSet

«interface»
javax.sql.rowset.CachedRowSet

com.sun.rowset.JdbcRowSetImpl com.sun.rowset.CachedRowSetImpl

The RowSet interface contains the JavaBeans properties with getter and setter methods.
You can use the setter methods to set a new url, username, password, and command for an
SQL statement. Using a RowSet, Listing 34.1 can be simplified, as shown in Listing 35.4.

Listing 35.4 SimpleRowSet.java
 1 import java.sql.SQLException;
 2 import javax.sql.RowSet;
 3 import com.sun.rowset.*;
 4

M35_LIAN0182_11_SE_C35.indd 15 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-16 Chapter 35 Advanced Java Database Programming

 5 public class SimpleRowSet {
 6 public static void main(String[] args)
 7 throws SQLException, ClassNotFoundException {
 8 // Load the JDBC driver
 9 Class.forName("com.mysql.jdbc.Driver");
10 System.out.println("Driver loaded");
11
12 // Create a row set
13 RowSet rowSet = new JdbcRowSetImpl();
14
15 // Set RowSet properties
16 rowSet.setUrl("jdbc:mysql://localhost/javabook");
17 rowSet.setUsername("scott");
18 rowSet.setPassword("tiger");
19 rowSet.setCommand("select firstName, mi, lastName " +
20 "from Student where lastName = 'Smith'");
21 rowSet.execute();
22
23 // Iterate through the result and print the student names
24 while (rowSet.next())
25 System.out.println(rowSet.getString(1) + "\t" +
26 rowSet.getString(2) + "\t" + rowSet.getString(3));
27
28 // Close the connection
29 rowSet.close();
30 }
31 }

Line 13 creates a RowSet object using JdbcRowSetImpl. The program uses the RowSet’s
set method to set a URL, username, and password (lines 16–18) and a command for a query
statement (line 19). Line 24 executes the command in the RowSet. The methods next() and
getString(int) for processing the query result (lines 25–26) are inherited from ResultSet.

If you replace JdbcRowSet with CachedRowSet in line 13, the program will work just
fine. Note, the JDBC-ODBC driver supports JdbcRowSetImpl, but not CachedRowSetImpl.

Tip
Since RowSet is a subinterface of ResultSet, all the methods in ResultSet can be
used in RowSet. For example, you can obtain ResultSetMetaData from a RowSet
using the getMetaData() method.

35.5.2 RowSet for PreparedStatement
The discussion in §34.5, “PreparedStatement,” introduced processing parameterized SQL
statements using the PreparedStatement interface. RowSet has the capability to support
parameterized SQL statements. The set methods for setting parameter values in Prepared-
Statement are implemented in RowSet. You can use these methods to set parameter values
for a parameterized SQL command. Listing 35.5 demonstrates how to use a parameterized
statement in RowSet. Line 19 sets an SQL query statement with two parameters for lastName
and mi in a RowSet. Since these two parameters are strings, the setString method is used
to set actual values in lines 21–22.

Listing 35.5 RowSetPreparedStatement.java
 1 import java.sql.*;
 2 import javax.sql.RowSet;
 3 import com.sun.rowset.*;
 4

M35_LIAN0182_11_SE_C35.indd 16 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.5 RowSet, JdbcRowSet, and CachedRowSet 35-17

 5 public class RowSetPreparedStatement {
 6 public static void main(String[] args)
 7 throws SQLException, ClassNotFoundException {
 8 // Load the JDBC driver
 9 Class.forName("com.mysql.jdbc.Driver");
10 System.out.println("Driver loaded");
11
12 // Create a row set
13 RowSet rowSet = new JdbcRowSetImpl();
14
15 // Set RowSet properties
16 rowSet.setUrl("jdbc:mysql://localhost/javabook");
17 rowSet.setUsername("scott");
18 rowSet.setPassword("tiger");
19 rowSet.setCommand("select * from Student where lastName = ? " +
20 "and mi = ?");
21 rowSet.setString(1, "Smith");
22 rowSet.setString(2, "R");
23 rowSet.execute();
24
25 ResultSetMetaData rsMetaData = rowSet.getMetaData();
26 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
27 System.out.printf("%-12s\t", rsMetaData.getColumnName(i));
28 System.out.println();
29
30 // Iterate through the result and print the student names
31 while (rowSet.next()) {
32 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
33 System.out.printf("%-12s\t", rowSet.getObject(i));
34 System.out.println();
35 }
36
37 // Close the connection
38 rowSet.close();
39 }
40 }

35.5.3 Scrolling and Updating RowSet
By default, a ResultSet object is neither scrollable nor updatable. However, a RowSet
object is both. It is easier to scroll and update a database through a RowSet than through a
ResultSet. Listing 35.6 rewrites Listing 35.3 using a RowSet. You can use methods such
as absolute(int) to move the cursor and methods such as delete(), updateRow(), and
insertRow() to update the database.

Listing 35.6 ScrollUpdateRowSet.java
 1 import java.sql.*;
 2 import javax.sql.RowSet;
 3 import com.sun.rowset.JdbcRowSetImpl;
 4
 5 public class ScrollUpdateRowSet {
 6 public static void main(String[] args)
 7 throws SQLException, ClassNotFoundException {
 8 // Load the JDBC driver
 9 Class.forName("com.mysql.jdbc.Driver");
10 System.out.println("Driver loaded");
11

M35_LIAN0182_11_SE_C35.indd 17 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-18 Chapter 35 Advanced Java Database Programming

12 // Create a row set
13 RowSet rowSet = new JdbcRowSetImpl();
14
15 // Set RowSet properties
16 rowSet.setUrl("jdbc:mysql://localhost/javabook");
17 rowSet.setUsername("scott");
18 rowSet.setPassword("tiger");
19 rowSet.setCommand("select state, capital from StateCapital");
20 rowSet.execute();
21
22 System.out.println("Before update ");
23 displayRowSet(rowSet);
24
25 // Update the second row
26 rowSet.absolute(2); // Move cursor to the 2nd row
27 rowSet.updateString("state", "New S"); // Update the column
28 rowSet.updateString("capital", "New C"); // Update the column
29 rowSet.updateRow(); // Update the row in the data source
30
31 // Insert after the second row
32 rowSet.last();
33 rowSet.moveToInsertRow(); // Move cursor to the insert row
34 rowSet.updateString("state", "Florida");
35 rowSet.updateString("capital", "Tallahassee");
36 rowSet.insertRow(); // Insert the row
37 rowSet.moveToCurrentRow(); // Move the cursor to the current row
38
39 // Delete fourth row
40 rowSet.absolute(4); // Move cursor to the fifth row
41 rowSet.deleteRow(); // Delete the second row
42
43 System.out.println("After update ");
44 displayRowSet(rowSet);
45
46 // Close the connection
47 rowSet.close();
48 }
49
50 private static void displayRowSet(RowSet rowSet)
51 throws SQLException {
52 ResultSetMetaData rsMetaData = rowSet.getMetaData();
53 rowSet.beforeFirst();
54 while (rowSet.next()) {
55 for (int i = 1; i <= rsMetaData.getColumnCount(); i++)
56 System.out.printf("%-12s\t", rowSet.getObject(i));
57 System.out.println();
58 }
59 }
60 }

If you replace JdbcRowSet with CachedRowSet in line 13, the database is not changed.
To make the changes on the CachedRowSet effective in the database, you must invoke the
acceptChanges() method after you make all the changes, as follows:

// Write changes back to the database
((com.sun.rowset.CachedRowSetImpl)rowSet).acceptChanges();

This method automatically reconnects to the database and writes all the changes back to
the database.

M35_LIAN0182_11_SE_C35.indd 18 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.5 RowSet, JdbcRowSet, and CachedRowSet 35-19

35.5.4 RowSetEvent
A RowSet object fires a RowSetEvent whenever the object’s cursor has moved, a row has
changed, or the entire row set has changed. This event can be used to synchronize a RowSet with
the components that rely on the RowSet. For example, a visual component that displays the con-
tents of a RowSet should be synchronized with the RowSet. The RowSetEvent can be used to
achieve synchronization. The handlers in RowSetListener are cursorMoved(RowSetEvent),
rowChanged(RowSetEvent), and cursorSetChanged(RowSetEvent).

Listing 35.7 gives an example that demonstrates RowSetEvent. A listener for RowSetEvent
is registered in lines 14–26. When rowSet.execute() (line 33) is executed, the entire row
set is changed, so the listener’s rowSetChanged handler is invoked. When rowSet.last()
(line 35) is executed, the cursor is moved, so the listener’s cursorMoved handler is invoked.
When rowSet.updateRow() (line 37) is executed, the row is updated, so the listener’s row-
Changed handler is invoked.

Listing 35.7 TestRowSetEvent.java
 1 import java.sql.*;
 2 import javax.sql.*;
 3 import com.sun.rowset.*;
 4
 5 public class TestRowSetEvent {
 6 public static void main(String[] args)
 7 throws SQLException, ClassNotFoundException {
 8 // Load the JDBC driver
 9 Class.forName("com.mysql.jdbc.Driver");
10 System.out.println("Driver loaded");
11
12 // Create a row set
13 RowSet rowSet = new JdbcRowSetImpl();
14 rowSet.addRowSetListener(new RowSetListener() {
15 public void cursorMoved(RowSetEvent e) {
16 System.out.println("Cursor moved");
17 }
18
19 public void rowChanged(RowSetEvent e) {
20 System.out.println("Row changed");
21 }
22
23 public void rowSetChanged(RowSetEvent e) {
24 System.out.println("row set changed");
25 }
26 });
27
28 // Set RowSet properties
29 rowSet.setUrl("jdbc:mysql://localhost/javabook");
30 rowSet.setUsername("scott");
31 rowSet.setPassword("tiger");
32 rowSet.setCommand("select * from Student");
33 rowSet.execute();
34
35 rowSet.last(); // Cursor moved
36 rowSet.updateString("lastName", "Yao"); // Update column
37 rowSet.updateRow(); // Row updated
38
39 // Close the connection
40 rowSet.close();
41 }
42 }

M35_LIAN0182_11_SE_C35.indd 19 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-20 Chapter 35 Advanced Java Database Programming

 35.5.1 What are the advantages of RowSet?

 35.5.2 What are JdbcRowSet and CachedRowSet? What are the differences between
them?

 35.5.3 How do you create a JdbcRowSet and a CachedRowSet?

 35.5.4 Can you scroll and update a RowSet? What method must be invoked to write the
changes in a CachedRowSet to the database?

 35.5.5 Describe the handlers in RowSetListener.

35.6 Storing and Retrieving Images in JDBC
You can store and retrieve images using JDBC.

A database can store not only numbers and strings, but also images. SQL3 introduced a new
data type called BLOB (Binary Large OBject) for storing binary data, which can be used to
store images. Another new SQL3 type is CLOB (Character Large OBject) for storing a large
text in the character format. JDBC introduced the interfaces java.sql.Blob and java.
sql.Clob to support mapping for these new SQL types. You can use getBlob, setBi-
naryStream, getClob, setBlob, and setClob, to access SQL BLOB and CLOB values in
the interfaces ResultSet and PreparedStatement.

To store an image into a cell in a table, the corresponding column for the cell must be of
the BLOB type. For example, the following SQL statement creates a table whose type for the
flag column is BLOB:

create table Country(name varchar(30), flag blob,
 description varchar(255));

In the preceding statement, the description column is limited to 255 characters, which is
the upper limit for MySQL. For Oracle, the upper limit is 32,672 bytes. For a large character
field, you can use the CLOB type for Oracle, which can store up to two GB of characters.
MySQL does not support CLOB. However, you can use BLOB to store a long string and con-
vert binary data into characters.

Note
MS Access database does not support the BLOB and CLOB types.

To insert a record with images to a table, define a prepared statement like this one:

 PreparedStatement pstmt = connection.prepareStatement(
 "insert into Country values(?, ?, ?)");

Images are usually stored in files. You may first get an instance of InputStream for an image
file then use the setBinaryStream method to associate the input stream with a cell in the
table, as follows:

// Store image to the table cell
File file = new File(imageFilename);
InputStream inputImage = new FileInputStream(file);
pstmt.setBinaryStream(2, inputImage, (int)(file.length()));

To retrieve an image from a table, use the getBlob method, as shown below:

// Store image to the table cell
Blob blob = rs.getBlob(1);
ImageIcon imageIcon = new ImageIcon(
 blob.getBytes(1, (int)blob.length()));

Listing 35.8 gives a program that demonstrates how to store and retrieve images in JDBC.
The program first creates the Country table and stores data to it. Then the program retrieves

Point
Check

Point
Key

M35_LIAN0182_11_SE_C35.indd 20 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.6 Storing and Retrieving Images in JDBC 35-21

the country names from the table and adds them to a combo box. When the user selects a name
from the combo box, the country's flag and description are displayed, as shown in Figure 35.4.

Figure 35.4 The program enables you to retrieve data, including images, from a table and
displays them.

Listing 35.8 StoreAndRetrieveImage.java
 1 import java.sql.*;
 2 import java.io.*;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.ComboBox;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.image.Image;
 8 import javafx.scene.image.ImageView;
 9 import javafx.scene.layout.BorderPane;
 10 import javafx.stage.Stage;
 11
 12 public class StoreAndRetrieveImage extends Application {
 13 // Connection to the database
 14 private Connection connection;
 15
 16 // Statement for static SQL statements
 17 private Statement stmt;
 18
 19 // Prepared statement
 20 private PreparedStatement pstmt = null;
 21 private DescriptionPane descriptionPane
 22 = new DescriptionPane();
 23
 24 private ComboBox<String> cboCountry = new ComboBox<>();
 25
 26 @Override // Override the start method in the Application class
 27 public void start(Stage primaryStage) {
 28 try {
 29 connectDB(); // Connect to DB
 30 storeDataToTable(); //Store data to the table (including image)
 31 fillDataInComboBox(); // Fill in combo box
 32 retrieveFlagInfo(cboCountry.getSelectionModel().getSelectedItem());
 33 }
 34 catch (Exception ex) {
 35 ex.printStackTrace();
 36 }
 37
 38 BorderPane paneForComboBox = new BorderPane();
 39 paneForComboBox.setLeft(new Label("Select a country: "));
 40 paneForComboBox.setCenter(cboCountry);
 41 cboCountry.setPrefWidth(400);
 42 BorderPane pane = new BorderPane();

M35_LIAN0182_11_SE_C35.indd 21 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-22 Chapter 35 Advanced Java Database Programming

 43 pane.setTop(paneForComboBox);
 44 pane.setCenter(descriptionPane);
 45
 46 Scene scene = new Scene(pane, 350, 150);
 47 primaryStage.setTitle("StoreAndRetrieveImage");
 48 primaryStage.setScene(scene); // Place the scene in the stage
 49 primaryStage.show(); // Display the stage
 50
 51 cboCountry.setOnAction(e ->
 52 retrieveFlagInfo(cboCountry.getValue()));
 53 }
 54
 55 private void connectDB() throws Exception {
 56 // Load the driver
 57 Class.forName("com.mysql.jdbc.Driver");
 58 System.out.println("Driver loaded");
 59
 60 // Establish connection
 61 connection = DriverManager.getConnection
 62 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
 63 System.out.println("Database connected");
 64
 65 // Create a statement for static SQL
 66 stmt = connection.createStatement();
 67
 68 // Create a prepared statement to retrieve flag and description
 69 pstmt = connection.prepareStatement("select flag, description " +
 70 "from Country where name = ?");
 71 }
 72
 73 private void storeDataToTable() {
 74 String[] countries = {"Canada", "UK", "USA", "Germany",
 75 "Indian", "China"};
 76
 77 String[] imageFilenames = {"image/ca.gif", "image/uk.gif",
 78 "image/us.gif", "image/germany.gif", "image/india.gif",
 79 "image/china.gif"};
 80
 81 String[] descriptions = {"A text to describe Canadian " +
 82 "flag is omitted", "British flag ...", "American flag ...",
 83 "German flag ...", "Indian flag ...", "Chinese flag ..."};
 84
 85 try {
 86 // Create a prepared statement to insert records
 87 PreparedStatement pstmt = connection.prepareStatement(
 88 "insert into Country values(?, ?, ?)");
 89
 90 // Store all predefined records
 91 for (int i = 0; i < countries.length; i++) {
 92 pstmt.setString(1, countries[i]);
 93
 94 // Store image to the table cell
 95 java.net.URL url =
 96 this.getClass().getResource(imageFilenames[i]);
 97 InputStream inputImage = url.openStream();
 98 pstmt.setBinaryStream(2, inputImage,
 99 (int)(inputImage.available()));
100
101 pstmt.setString(3, descriptions[i]);
102 pstmt.executeUpdate();

M35_LIAN0182_11_SE_C35.indd 22 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35.6 Storing and Retrieving Images in JDBC 35-23

103 }
104
105 System.out.println("Table Country populated");
106 }
107 catch (Exception ex) {
108 ex.printStackTrace();
109 }
110 }
111
112 private void fillDataInComboBox() throws Exception {
113 ResultSet rs = stmt.executeQuery("select name from Country");
114 while (rs.next()) {
115 cboCountry.getItems().add(rs.getString(1));
116 }
117 cboCountry.getSelectionModel().selectFirst();
118 }
119
120 private void retrieveFlagInfo(String name) {
121 try {
122 pstmt.setString(1, name);
123 ResultSet rs = pstmt.executeQuery();
124 if (rs.next()) {
125 Blob blob = rs.getBlob(1);
126 ByteArrayInputStream in = new ByteArrayInputStream
127 (blob.getBytes(1, (int)blob.length()));
128 Image image = new Image(in);
129 ImageView imageView = new ImageView(image);
130 descriptionPane.setImageView(imageView);
131 descriptionPane.setTitle(name);
132 String description = rs.getString(2);
133 descriptionPane.setDescription(description);
134 }
135 }
136 catch (Exception ex) {
137 System.err.println(ex);
138 }
139 }
140 }

DescriptionPane (line 21) is a component for displaying a country (name, flag, and descrip-
tion). This component was presented in Listing 16.6, DescriptionPane.java.

The storeDataToTable method (lines 73–110) populates the table with data. The fill-
DataInComboBox method (lines 112–118) retrieves the country names and adds them to the
combo box. The retrieveFlagInfo(name) method (lines 120–139) retrieves the flag and
description for the specified country name.

 35.6.1 How do you store images into a database?

 35.6.2 How do you retrieve images from a database?

 35.6.3 Does Oracle support the SQL3 BLOB type and CLOB type? What about MySQL
and Access?

Point
Check

BLOB type 35-20
CLOB type 35-20
batch mode 35-2
cached row set 35-15

row set 35-15
scrollable result set 35-2
updatable result set 35-11

Key Terms

M35_LIAN0182_11_SE_C35.indd 23 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-24 Chapter 35 Advanced Java Database Programming

ChapTer summary

1. This chapter developed a universal SQL client that can be used to access any local or
remote relational database.

2. You can use the addBatch(SQLString) method to add SQL statements to a statement
for batch processing.

3. You can create a statement to specify that the result set be scrollable and updatable. By
default, the result set is neither of these.

4. The RowSet can be used to simplify Java database programming. A RowSet object is
scrollable and updatable. A RowSet can fire a RowSetEvent.

5. You can store and retrieve image data in JDBC using the SQL BLOB type.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

 *35.1 (Batch update) Write a program that inserts a thousand records to a database, and
compare the performance with and without batch updates, as shown in Figure 35.5a.
Suppose the table is defined as follows:

create table Temp(num1 double, num2 double, num3 double)

 Use the Math.random() method to generate random numbers for each record.
Create a dialog box that contains DBConnectionPanel, discussed in Exercise
34.3. Use this dialog box to connect to the database. When you click the Connect
to Database button in Figure 35.5a, the dialog box in Figure 35.5b is displayed.

Figure 35.5 The program demonstrates the performance improvements that result from
using batch updates.

(a) (b)

 **35.2 (Scrollable result set) Write a program that uses the buttons First, Next, Prior, Last,
Insert, Delete, and Update, and modify a single record in the Address table, as
shown in Figure 35.6.

M35_LIAN0182_11_SE_C35.indd 24 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 35-25

The Address table is defined as follows:

create table Address (
 firstname varchar(25),
 mi char(1),
 lastname varchar(25),
 street varchar(40),
 city varchar(20),
 state varchar(2),
 zip varchar(5),
 telephone varchar(10),
 email varchar(30),
 primary key (firstname, mi, lastname)
);

 *35.3 (Display table contents) Write a program that displays the content for a given table.
As shown in Figure 35.7a, you enter a table and click the Show Contents button to
display the table contents in a table view.

Figure 35.6 You can use the buttons to display and modify a single record in the Address
table.

Figure 35.7 (a) Enter a table name to display the table contents. (b) Select a table name from
the combo box to display its contents.

(a) (b)

 *35.4 (Find tables and showing their contents) Write a program that fills in table names
in a combo box, as shown in Figure 35.7b. You can select a table from the combo
box to display its contents in a table view.

M35_LIAN0182_11_SE_C35.indd 25 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

35-26 Chapter 35 Advanced Java Database Programming

 **35.5 (Revise SQLClient.java) Rewrite Listing 35.1, SQLClient.java, to display the query
result in a TableView, as shown in Figure 35.8.

Figure 35.8 The query result is displayed in a TableView.

 *35.5 (Populate Salary table) Rewrite Programming Exercise 34.8 using a batch mode
to improve performance.

M35_LIAN0182_11_SE_C35.indd 26 5/29/17 9:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To describe Java’s internationalization features (§36.1).

■■ To construct a locale with language, country, and variant (§36.2).

■■ To display date and time based on locale (§36.3).

■■ To display numbers, currencies, and percentages based on locale (§36.4).

■■ To develop applications for international audiences using resource
bundles (§36.5).

■■ To specify encoding schemes for text I/O (§36.6).

Internationalization

CHAPTER

36

M36_LIAN0182_11_SE_C36.indd 1 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-2 Chapter 36 Internationalization

36.1 Introduction
This chapter introduces writing Java code for international audience.

Many websites maintain several versions of webpages so that readers can choose one written
in a language they understand. Because there are so many languages in the world, it would be
highly problematic to create and maintain enough different versions to meet the needs of all cli-
ents everywhere. Java comes to the rescue. Java is the first language designed from the ground
up to support internationalization. In consequence, it allows your programs to be customized
for any number of countries or languages without requiring cumbersome changes in the code.

Here are the major Java features that support internationalization:

■■ Java characters use Unicode, a 16-bit encoding scheme established by the Unicode
Consortium to support the interchange, processing, and display of written texts in the
world’s diverse languages. The use of Unicode encoding makes it easy to write Java
programs that can manipulate strings in any international language. (To see all the
Unicode characters, visit mindprod.com/jgloss/reuters.html.)

■■ Java provides the Locale class to encapsulate information about a specific locale. A
Locale object determines how locale-sensitive information, such as date, time, and
number, is displayed, and how locale-sensitive operations, such as sorting strings, are
performed. The classes for formatting date, time, and numbers, and for sorting strings
are grouped in the java.text package.

■■ Java uses the ResourceBundle class to separate locale-specific information, such
as status messages and GUI component labels, from the program. The information is
stored outside the source code and can be accessed and loaded dynamically at runtime
from a ResourceBundle, rather than hard-coded into the program.

In this chapter, you will learn how to format dates, numbers, currencies, and percentages for
different regions, countries, and languages. You will also learn how to use resource bundles
to define which images and strings are used by a component, depending on the user’s locale
and preferences.

36.2 The Locale Class
The Locale class defines a locale: language and nation.

A Locale object represents a geographical, political, or cultural region in which a specific
language or custom is used. For example, Americans speak English, and the Chinese speak
Chinese. The conventions for formatting dates, numbers, currencies, and percentages may dif-
fer from one country to another. The Chinese, for instance, use year/month/day to represent the
date, while Americans use month/day/year. It is important to realize that locale is not defined
only by country. For example, Canadians speak either Canadian English or Canadian French,
depending on which region of Canada they reside in.

To create a Locale object, use one of the three constructors with a specified language and
optional country and variant, as shown in Figure 36.1.

The language should be a valid language code—that is, one of the lowercase two-letter
codes defined by ISO-639. For example, zh stands for Chinese, da for Danish, en for English,
de for German, and ko for Korean. Table 36.1 lists the language codes.

The country should be a valid ISO country code—that is, one of the uppercase, two-letter
codes defined by ISO-3166. For example, CA stands for Canada, CN for China, DK for Denmark,
DE for Germany, and US for the United States. Table 36.2 lists the country codes.

The argument variant is rarely used and is needed only for exceptional or system-dependent
situations to designate information specific to a browser or vendor. For example, the Norwe-
gian language has two sets of spelling rules, a traditional one called bokmål and a new one
called nynorsk. The locale for traditional spelling would be created as follows:

new Locale("no", "NO", "B");

Point
Key

Point
Key

M36_LIAN0182_11_SE_C36.indd 2 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.2 The Locale Class 36-3

Code Language Code Language

da Danish ja Japanese

de German ko Korean

el Greek nl Dutch

en English no Norwegian

es Spanish pt Portuguese

fi Finnish sv Swedish

fr French tr Turkish

it Italian zh Chinese

Table 31.1 Common Language Codes

java.util.Locale

+Locale(language: String)
+Locale(language: String, country: String)
+Locale(language: String, country: String,
variant: String)

+getCountry(): String
+getLanguage(): String
+getVariant(): String
+getDefault(): Locale
+getDisplayCountry(): String
+getDisplayLanguage(): String
+getDisplayName(): String

+getDisplayVariant(): String
+getAvailableLocales(): Locale[]

Constructs a locale from a language code.
Constructs a locale from language and country codes.
Constructs a locale from language, country, and variant codes.

Returns the country/region code for this locale.
Returns the language code for this locale.
Returns the variant code for this locale.
Gets the default locale on the machine.
Returns the name of the country as expressed in the current locale.
Returns the name of the language as expressed in the current locale.
Returns the name for the locale. For example, the name is Chinese

(China) for the locale Locale.CHINA.
Returns the name for the locale’s variant if it exists.
Returns the available locales in an array.

Figure 36.1 The Locale class encapsulates a locale.

Code Country Code Country

AT Austria IE Ireland

BE Belgium HK Hong Kong

CA Canada IT Italy

CH Switzerland JP Japan

CN China KR Korea

DE Germany NL Netherlands

DK Denmark NO Norway

ES Spain PT Portugal

FI Finland SE Sweden

FR France TR Turkey

GB United Kingdom TW Taiwan

GR Greece US United States

Table 31.2 Common Country Codes

For convenience, the Locale class contains many predefined locale constants. Locale.CANADA
is for the country Canada and language English; Locale.CANADA_FRENCH is for the country
Canada and language French. Several other common constants are:

Locale.US, Locale.UK, Locale.FRANCE, Locale.GERMANY, Locale.ITALY,
Locale.CHINA, Locale.KOREA, Locale.JAPAN, and Locale.TAIWAN

M36_LIAN0182_11_SE_C36.indd 3 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-4 Chapter 36 Internationalization

The Locale class also provides the following constants based on language:

Locale.CHINESE, Locale.ENGLISH, Locale.FRENCH, Locale.GERMAN,
Locale.ITALIAN, Locale.JAPANESE, Locale.KOREAN,
Locale.SIMPLIFIED_CHINESE, and Locale.TRADITIONAL_CHINESE

Tip
You can invoke the static method getAvailableLocales() in the Locale class to
obtain all the available locales supported in the system. For example,

Locale[] availableLocales = Calendar.getAvailableLocales();

returns all the locales in an array.

Tip
Your machine has a default locale. You may override it by supplying the language and
region parameters when you run the program, as follows:

java –Duser.language=zh –Duser.region=CN MainClass

An operation that requires a Locale to perform its task is called locale sensitive. Displaying a
number such as a date or time, for example, is a locale-sensitive operation; the number should
be formatted according to the customs and conventions of the user’s locale. The sections that
follow introduce locale-sensitive operations.

 36.2.1 How does Java support international characters in languages like Chinese and Arabic?

 36.2.2 How do you construct a Locale object? How do you get all the available locales
from a Calendar object?

 36.2.3 How do you create a locale for the French-speaking region of Canada? How do you
create a locale for the Netherlands?

36.3 Displaying Date and Time
The representation of date and time is dependent on locale.

Applications often need to obtain date and time. Java provides a system-independent encapsu-
lation of date and time in the java.util.Date class; it also provides java.util.TimeZone
for dealing with time zones, and java.util.Calendar for extracting detailed informa-
tion from Date. Different locales have different conventions for displaying date and time.
Should the year, month, or day be displayed first? Should slashes, periods, or colons be used
to separate fields of the date? What are the names of the months in the language? The
java.text.DateFormat class can be used to format date and time in a locale-sensitive way
for display to the user. The Date class was introduced in Section 9.6.1, “The Date Class,” and
the Calendar class and its subclass GregorianCalendar were introduced in Section 13.4,
“Case Study: Calendar and GregorianCalendar.”

36.3.1 The TimeZone Class
TimeZone represents a time zone offset and also figures out daylight savings. To get a
 TimeZone object for a specified time zone ID, use TimeZone.getTimeZone(id). To set a
time zone in a Calendar object, use the setTimeZone method with a time zone ID. For exam-
ple, cal.setTimeZone(TimeZone.getTimeZone("CST")) sets the time zone to Central
Standard Time. To find all the available time zones supported in Java, use the static method
getAvailableIDs() in the TimeZone class. In general, the international time zone ID is a
string in the form of continent/city like Europe/Berlin, Asia/Taipei, and America/Washington.
You can also use the static method getDefault() in the TimeZone class to obtain the default
time zone on the host machine.

Point
Check

Point
Key

M36_LIAN0182_11_SE_C36.indd 4 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.3 Displaying Date and Time 36-5

36.3.2 The DateFormat Class
The DateFormat class can be used to format date and time in a number of styles. The
DateFormat class supports several standard formatting styles. To format date and time, simply
create an instance of DateFormat using one of the three static methods getDateInstance,
getTimeInstance, and getDateTimeInstance and apply the format(Date) method on
the instance, as shown in Figure 36.2.

java.text.DateFormat

+format(date: Date): String
+getDateInstance(): DateFormat
+getDateInstance(dateStyle: int): DateFormat
+getDateInstance(dateStyle: int, aLocale:
 Locale): DateFormat

+getDateTimeInstance(): DateFormat

+getDateTimeInstance(dateStyle: int,
 timeStyle: int): DateFormat

+getDateTimeInstance(dateStyle: int, timeStyle:
 int, aLocale: Locale): DateFormat

+getInstance(): DateFormat

Formats a date into a date/time string.
Gets the date formatter with the default formatting style for the default locale.
Gets the date formatter with the given formatting style for the default locale.
Gets the date formatter with the given formatting style for the given locale.

Gets the date and time formatter with the default formatting style for the
default locale.

Gets the date and time formatter with the given date and time formatting
styles for the default locale.

Gets the date and time formatter with the given formatting styles for the
given locale.

Gets a default date and time formatter that uses the SHORT style for both the
date and the time.

Figure 36.2 The DateFormat class formats date and time.

The dateStyle and timeStyle are one of the following constants: DateFormat.SHORT,
DateFormat.MEDIUM, DateFormat.LONG, DateFormat.FULL. The exact result depends
on the locale, but generally,

■■ SHORT is completely numeric, such as 7/24/98 (for date) and 4:49 PM (for time).

■■ MEDIUM is longer, such as 24-Jul-98 (for date) and 4:52:09 PM (for time).

■■ LONG is even longer, such as July 24, 1998 (for date) and 4:53:16 PM EST (for time).

■■ FULL is completely specified, such as Friday, July 24, 1998 (for date) and 4:54:13
o’clock PM EST (for time).

The statements given below display current time with a specified time zone (CST), format-
ting style (full date and full time), and locale (US).

GregorianCalendar calendar = new GregorianCalendar();
DateFormat formatter = DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL, Locale.US);
TimeZone timeZone = TimeZone.getTimeZone("CST");
formatter.setTimeZone(timeZone);
System.out.println("The local time is " +
 formatter.format(calendar.getTime()));

36.3.3 The SimpleDateFormat Class
The date and time formatting subclass, SimpleDateFormat, enables you to choose any user-
defined pattern for date and time formatting. The constructor shown below can be used to
create a SimpleDateFormat object, and the object can be used to convert a Date object into
a string with the desired format.

public SimpleDateFormat(String pattern)

M36_LIAN0182_11_SE_C36.indd 5 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-6 Chapter 36 Internationalization

The parameter pattern is a string consisting of characters with special meanings. For exam-
ple, y means year, M means month, d means day of the month, G is for era designator, h means
hour, m means minute of the hour, s means second of the minute, and z means time zone.
Therefore, the following code will display a string like “Current time is 1997.11.12 AD at
04:10:18 PST” because the pattern is “yyyy.MM.dd G ‘at’ hh:mm:ss z”.

SimpleDateFormat formatter
 = new SimpleDateFormat("yyyy.MM.dd G 'at' hh:mm:ss z");
date currentTime = new Date();
String dateString = formatter.format(currentTime);
System.out.println("Current time is " + dateString);

36.3.4 The DateFormatSymbols Class
The DateFormatSymbols class encapsulates localizable date-time formatting data, such as
the names of the months and the names of the days of the week, as shown in Figure 36.3.

For example, the following statement displays the month names and weekday names for
the default locale:

DateFormatSymbols symbols = new DateFormatSymbols();
String[] monthNames = symbols.getMonths();
for (int i = 0; i < monthNames.length; i++) {
 System.out.println(monthNames[i]); // Display January, ...
}

String[] weekdayNames = symbols.getWeekdays();
for (int i = 0; i < weekdayNames.length; i++) {
 System.out.println(weekdayNames[i]); // Display Sunday, Monday, ...
}

java.text.DateFormatSymbols

+DateFormatSymbols()
+DateFormatSymbols(Locale locale)
+getAmPmStrings(): String[]
+getEras(): String[]
+getMonths(): String[]
+setMonths(newMonths: String[]): void
+getShortMonths(): String[]
+setShortMonths(newShortMonths: String[]):
void

+getWeekdays(): String[]
+setWeekdays(newWeekdays: String[]): void
+getShotWeekdays(): String[]
+setShortWeekdays(newWeekdays: String[]):
void

Constructs a DateFormatSymbols object for the default locale.

Constructs a DateFormatSymbols object by for the given locale.

Gets AM/PM strings. For example: "AM" and "PM".

Gets era strings. For example: "AD" and "BC".

Gets month strings. For example: "January", "February", etc.

Sets month strings for this locale.

Gets short month strings. For example: "Jan", "Feb", etc.

Sets short month strings for this locale.

Gets weekday strings. For example: "Sunday", "Monday", etc.

Sets weekday strings.

Gets short weekday strings. For example: "Sun", "Mon", etc.

Sets short weekday strings. For example: "Sun", "Mon", etc.

Figure 36.3 The DateFormatSymbols class encapsulates localizable date-time formatting data.

The following two examples demonstrate how to display date, time, and calendar based on
locale. The first example creates a clock and displays date and time in locale-sensitive format.
The second example displays several different calendars with the names of the days shown in
the appropriate local language.

36.3.5 Example: Displaying an International Clock
Write a program that displays a clock to show the current time based on the specified locale
and time zone. The locale and time zone are selected from the combo boxes that contain the
available locales and time zones in the system, as shown in Figure 36.4.

M36_LIAN0182_11_SE_C36.indd 6 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.3 Displaying Date and Time 36-7

Figure 36.4 The program displays a clock that shows the current time with the specified
locale and time zone.

Figure 36.5 WorldClockApp contains WorldClockControl, and WorldClockControl contains WorldClock.

WorldClockApp

+start(primaryStage: Stage) : void
+main(args: String[]): void

javafx.application.Application

WorldClockControl

-clock: WorldClock
-cboLocales: ComboBox<String>
-cboTimeZones: ComboBox<String>
-availableLocales: Locale[]
-availableTimeZones: String[]

+WorldClockControl()
-setAvailableLocales(): void
-setAvailableTimeZones(): void

WorldClock

-timeZone: TimeZone
-locale: Locale
-clock: ClockPane
-lblDigitTime: Label

+WorldClock()
+setTimeZone(timeZone:

TimeZone): void
+setLocale(locale: Locale): void
-setCurrentTime(): void

1 11 1

javafx.scene.layout.BorderPanejavafx.scene.layout.BorderPane

Here are the major steps in the program:

1. Create a subclass of BorderPane named WorldClock (see Listing 36.1) to contain an
instance of the ClockPane class (developed in Listing 14.21, ClockPane.java), and place
it in the center. Create a Label to display the digit time, and place it in the bottom. Use the
GregorianCalendar class to obtain the current time for a specific locale and time zone.

2. Create a subclass of BorderPanel named WorldClockControl (see Listing 36.2)
to contain an instance of WorldClock and two instances of ComboBox for selecting
locales and time zones.

3. Create an application named WorldClockApp (see Listing 36.3) to display an instance
of WorldClockControl.

The relationship among these classes is shown in Figure 36.5.

lisTing 36.1 WorldClock.java
 1 import java.util.Calendar;
 2 import java.util.TimeZone;
 3 import java.util.GregorianCalendar;
 4 import java.text.*;
 5 import java.util.Locale;
 6 import javafx.animation.KeyFrame;
 7 import javafx.animation.Timeline;
 8 import javafx.event.ActionEvent;
 9 import javafx.event.EventHandler;
10 import javafx.geometry.Pos;
11 import javafx.scene.control.Label;

M36_LIAN0182_11_SE_C36.indd 7 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-8 Chapter 36 Internationalization

12 import javafx.scene.layout.BorderPane;
13 import javafx.util.Duration;
14
15 public class WorldClock extends BorderPane {
16 private TimeZone timeZone = TimeZone.getTimeZone("EST");
17 private Locale locale = Locale.getDefault();
18 private ClockPane clock = new ClockPane(); // Still clock
19 private Label lblDigitTime = new Label();
20
21 public WorldClock() {
22 setCenter(clock);
23 setBottom(lblDigitTime);
24 BorderPane.setAlignment(lblDigitTime, Pos.CENTER);
25
26 EventHandler<ActionEvent> eventHandler = e -> {
27 setCurrentTime(); // Set a new clock time
28 };
29
30 // Create an animation for a running clock
31 Timeline animation = new Timeline(
32 new KeyFrame(Duration.millis(1000), eventHandler));
33 animation.setCycleCount(Timeline.INDEFINITE);
34 animation.play(); // Start animation
35
36 // Resize the clock
37 widthProperty().addListener(ov -> clock.setWidth(getWidth()));
38 heightProperty().addListener(ov -> clock.setHeight(getHeight()));
39 }
40
41 public void setTimeZone(TimeZone timeZone) {
42 this.timeZone = timeZone;
43 }
44
45 public void setLocale(Locale locale) {
46 this.locale = locale;
47 }
48
49 private void setCurrentTime() {
50 Calendar calendar = new GregorianCalendar(timeZone, locale);
51 clock.setHour(calendar.get(Calendar.HOUR));
52 clock.setMinute(calendar.get(Calendar.MINUTE));
53 clock.setSecond(calendar.get(Calendar.SECOND));
54
55 // Display digit time on the label
56 DateFormat formatter = DateFormat.getDateTimeInstance
57 (DateFormat.MEDIUM, DateFormat.LONG, locale);
58 formatter.setTimeZone(timeZone);
59 lblDigitTime.setText(formatter.format(calendar.getTime()));
60 }
61 }

lisTing 36.2 WorldClockControl.java
 1 import java.util.*;
 2 import javafx.geometry.Pos;
 3 import javafx.scene.control.ComboBox;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.layout.BorderPane;
 6 import javafx.scene.layout.GridPane;
 7
 8 public class WorldClockControl extends BorderPane {

M36_LIAN0182_11_SE_C36.indd 8 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.3 Displaying Date and Time 36-9

 9 // Obtain all available locales and time zone ids
10 private Locale[] availableLocales = Locale.getAvailableLocales();
11 private String[] availableTimeZones = TimeZone.getAvailableIDs();
12
13 // Comboxes to display available locales and time zones
14 private ComboBox<String> cboLocales = new ComboBox<>();
15 private ComboBox<String> cboTimeZones = new ComboBox<>();
16
17 // Create a clock
18 private WorldClock clock = new WorldClock();
19
20 public WorldClockControl() {
21 // Initialize cboLocales with all available locales
22 setAvailableLocales();
23
24 // Initialize cboTimeZones with all available time zones
25 setAvailableTimeZones();
26
27 // Initialize locale and time zone
28 clock.setLocale(
29 availableLocales[cboLocales.getSelectionModel()
30 .getSelectedIndex()]);
31 clock.setTimeZone(TimeZone.getTimeZone(
32 availableTimeZones[cboTimeZones.getSelectionModel()
33 .getSelectedIndex()]));
34
35 GridPane pane = new GridPane();
36 pane.setHgap(5);
37 pane.add(new Label("Locale"), 0, 0);
38 pane.add(new Label("Time Zone"), 0, 1);
39 pane.add(cboLocales, 1, 0);
40 pane.add(cboTimeZones, 1, 1);
41
42 setTop(pane);
43 setCenter(clock);
44 BorderPane.setAlignment(pane, Pos.CENTER);
45 BorderPane.setAlignment(clock, Pos.CENTER);
46
47 cboLocales.setOnAction(e ->
48 clock.setLocale(availableLocales[cboLocales.
49 getSelectionModel().getSelectedIndex()]));
50 cboTimeZones.setOnAction(e ->
51 clock.setTimeZone(TimeZone.getTimeZone(
52 availableTimeZones[cboTimeZones.
53 getSelectionModel().getSelectedIndex()])));
54 }
55
56 private void setAvailableLocales() {
57 for (int i = 0; i < availableLocales.length; i++)
58 cboLocales.getItems().add(availableLocales[i]
59 .getDisplayName() + " " + availableLocales[i].toString());
60
61 cboLocales.getSelectionModel().selectFirst();
62 }
63
64 private void setAvailableTimeZones() {
65 // Sort time zones
66 Arrays.sort(availableTimeZones);
67 for (int i = 0; i < availableTimeZones.length; i++) {
68 cboTimeZones.getItems().add(availableTimeZones[i]);
69 }

M36_LIAN0182_11_SE_C36.indd 9 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-10 Chapter 36 Internationalization

70 cboTimeZones.getSelectionModel().selectFirst();
71 }
72 }

lisTing 36.3 WorldClockApp.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;
 3 import javafx.stage.Stage;
 4
 5 public class WorldClockApp extends Application {
 6 @Override // Override the start method in the Application class
 7 public void start(Stage primaryStage) {
 8 // Create a scene and place it in the stage
 9 Scene scene = new Scene(new WorldClockControl(), 450, 350);
10 primaryStage.setTitle("WorldClockApp"); // Set the stage title
11 primaryStage.setScene(scene); // Place the scene in the stage
12 primaryStage.show(); // Display the stage
13 }
14 }

The WorldClock class creates an instance of ClockPane (line 18) and places it in the center
of the border pane (line 22). The setCurrentTime() method uses GregorianCalendar to
obtain a Calendar object for the specified locale and time zone (line 50). The clock time is
updated every one second using the current Calendar object in lines 51–53.

An instance of DateFormat is created (lines 56–57) and is used to format the date in
accordance with the locale (line 59).

The WorldClockControl class contains an instance of WorldClock and two combo
boxes. The combo boxes store all the available locales and time zones (lines 56–71). The newly
selected locale and time zone are set in the clock (lines 47–53) and used to display a new time
based on the current locale and time zone.

36.3.6 Example: Displaying a Calendar
Write a program that displays a calendar based on the specified locale, as shown in Figure 36.6.
The user can specify a locale from a combo box that consists of a list of all the available locales
supported by the system. When the program starts, the calendar for the current month of the
year is displayed. The user can use the Prior and Next buttons to browse the calendar.

Figure 36.6 The calendar program displays a calendar with a specified locale.

Here are the major steps in the program:

1. Define a subclass of BorderPane named CalendarPane (see Listing 36.4) to display
the calendar for the given year and month based on the specified locale.

M36_LIAN0182_11_SE_C36.indd 10 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.3 Displaying Date and Time 36-11

lisTing 36.4 CalendarPane.java
 1 import java.text.DateFormatSymbols;
 2 import java.text.SimpleDateFormat;
 3 import java.util.Calendar;
 4 import java.util.GregorianCalendar;
 5 import java.util.Locale;
 6 import javafx.geometry.Pos;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.GridPane;
 10 import javafx.scene.paint.Color;
 11 import javafx.scene.text.TextAlignment;
 12
 13 public class CalendarPane extends BorderPane {
 14 // The header label
 15 private Label lblHeader = new Label();
 16
 17 // Maximum number of labels to display day names and days
 18 private Label[] lblDay = new Label[49];
 19
 20 private Calendar calendar;
 21 private int month; // The specified month
 22 private int year; // The specified year
 23 private Locale locale = Locale.CHINA;
 24
 25 public CalendarPane() {
 26 // Create labels for displaying days
 27 for (int i = 0; i < 49; i++) {
 28 lblDay[i] = new Label();
 29 lblDay[i].setTextAlignment(TextAlignment.RIGHT);

Figure 36.7 CalendarApp contains CalendarPane.

CalendarPane

-month: int
-year: int
-calendar: java.util.Calendar
-locale: Locale

+getMonth(): int
+setMonth(newMonth: int): void
+getYear(): int
+setYear(newYear: int): void
+setLocale(newLocale: Locale): void
+showHeader(): void
+showDayNames(): void
+showDays(): void

CalendarApp

-calendarPane: CalendarPane
-cboLocale: ComboBox<String>
-btPrior: Button
-btNext: Button
-locales: java.utilLocale[]

+start(primaryStage: Stage): void
+main(args: String[]): void

javafx.scene.layout.BorderPane javafx.application.Application

1 1

2. Define an application named CalendarApp (Listing 36.5). Create a pane to hold an
instance of CalendarPane in the center, two buttons, Prior and Next in the bottom, and
a combo box in the top of the pane. The relationships among these classes are shown
in Figure 36.7.

M36_LIAN0182_11_SE_C36.indd 11 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-12 Chapter 36 Internationalization

 30 }
 31
 32 showDayNames(); // Display day names for the locale
 33
 34 GridPane dayPane = new GridPane();
 35 dayPane.setAlignment(Pos.CENTER);
 36
 37 dayPane.setHgap(10);
 38 dayPane.setVgap(10);
 39 for (int i = 0; i < 49; i++) {
 40 dayPane.add(lblDay[i], i % 7, i / 7);
 41 }
 42
 43 // Place header and calendar body in the pane
 44 this.setTop(lblHeader);
 45 BorderPane.setAlignment(lblHeader, Pos.CENTER);
 46 this.setCenter(dayPane);
 47
 48 // Set current month and year
 49 calendar = new GregorianCalendar();
 50 month = calendar.get(Calendar.MONTH);
 51 year = calendar.get(Calendar.YEAR);
 52 updateCalendar();
 53
 54 // Show calendar
 55 showHeader();
 56 showDays();
 57 }
 58
 59 /** Update the day names based on locale */
 60 private void showDayNames() {
 61 DateFormatSymbols dfs = new DateFormatSymbols(locale);
 62 String dayNames[] = dfs.getWeekdays();
 63
 64 // jlblDay[0], jlblDay[1], ..., jlblDay[6] for day names
 65 for (int i = 0; i < 7; i++) {
 66 lblDay[i].setText(dayNames[i + 1]);
 67 }
 68 }
 69
 70 /** Update the header based on locale */
 71 private void showHeader() {
 72 SimpleDateFormat sdf =
 73 new SimpleDateFormat("MMMM yyyy", locale);
 74 String header = sdf.format(calendar.getTime());
 75 lblHeader.setText(header);
 76 }
 77
 78 public void showDays() {
 79 // Get the day of the first day in a month
 80 int startingDayOfMonth = calendar.get(Calendar.DAY_OF_WEEK);
 81
 82 // Fill the calendar with the days before this month
 83 Calendar cloneCalendar = (Calendar) calendar.clone();
 84 cloneCalendar.add(Calendar.DATE, -1); // Becomes preceding month
 85 int daysInPrecedingMonth = cloneCalendar.getActualMaximum(
 86 Calendar.DAY_OF_MONTH);
 87
 88 for (int i = 0; i < startingDayOfMonth - 1; i++) {
 89 lblDay[i + 7].setTextFill(Color.LIGHTGRAY);

M36_LIAN0182_11_SE_C36.indd 12 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.3 Displaying Date and Time 36-13

 90 lblDay[i + 7].setText(daysInPrecedingMonth
 91 - startingDayOfMonth + 2 + i + "");
 92 }
 93
 94 // Display days of this month
 95 int daysInCurrentMonth = calendar.getActualMaximum(
 96 Calendar.DAY_OF_MONTH);
 97 for (int i = 1; i <= daysInCurrentMonth; i++) {
 98 lblDay[i - 2 + startingDayOfMonth + 7].setTextFill(Color.BLACK);
 99 lblDay[i - 2 + startingDayOfMonth + 7].setText(i + "");
100 }
101
102 // Fill the calendar with the days after this month
103 int j = 1;
104 for (int i = daysInCurrentMonth - 1 + startingDayOfMonth + 7;
105 i < 49; i++) {
106 lblDay[i].setTextFill(Color.LIGHTGRAY);
107 lblDay[i].setText(j++ + "");
108 }
109 }
110
111 /** Set the calendar to the first day of the
112 * specified month and year
113 */
114 public void updateCalendar() {
115 calendar.set(Calendar.YEAR, year);
116 calendar.set(Calendar.MONTH, month);
117 calendar.set(Calendar.DATE, 1);
118 }
119
120 public int getMonth() {
121 return month;
122 }
123
124 public void setMonth(int newMonth) {
125 month = newMonth;
126 updateCalendar();
127 showHeader();
128 showDays();
129 }
130
131 public int getYear() {
132 return year;
133 }
134
135 public void setYear(int newYear) {
136 year = newYear;
137 updateCalendar();
138 showHeader();
139 showDays();
140 }
141
142 public void setLocale(Locale locale) {
143 this.locale = locale;
144 updateCalendar();
145 showDayNames();
146 showHeader();
147 showDays();
148 }
149 }

M36_LIAN0182_11_SE_C36.indd 13 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-14 Chapter 36 Internationalization

CalendarPane is created to control and display the calendar. It displays the month and year
in the header, and the day names and days in the calendar body. The header and day names
are locale sensitive.

The showHeader method (lines 71–76) displays the calendar title in a form like “MMMM
yyyy”. The SimpleDateFormat class used in the showHeader method is a subclass of
DateFormat. SimpleDateFormat allows you to customize the date format to display the
date in various nonstandard styles.

The showDayNames method (lines 60–68) displays the day names in the calendar. The
DateFormatSymbols class used in the showDayNames method is a class for encapsulating
localizable date-time formatting data, such as the names of the months, the names of the days of
the week, and the time-zone data. The getWeekdays method is used to get an array of day names.

The showDays method (lines 60–68) displays the days for the specified month of the year.
As you can see in Figure 36.6, the labels before the current month are filled with the last few
days of the preceding month, and the labels after the current month are filled with the first few
days of the next month.

To fill the calendar with the days before the current month, a clone of calendar,
named cloneCalendar, is created to obtain the days for the preceding month (line 83).
cloneCalendar is a copy of calendar with separate memory space. Thus you can
change the properties of cloneCalendar without corrupting the calendar object. The
clone() method is defined in the Object class, which was introduced in Section 13.7,
“The Cloneable Interface.” You can clone any object as long as its defining class imple-
ments the Cloneable interface. The Calendar class implements Cloneable.

The cloneCalendar.getActualMaximum(Calendar.DAY_OF_MONTH) method (lines
95–96) returns the number of days in the month for the specified calendar.

lisTing 36.5 CalendarApp.java
 1 import java.util.Locale;
 2 import javafx.application.Application;
 3 import javafx.geometry.Pos;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.ComboBox;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.HBox;
10 import javafx.stage.Stage;
11
12 public class CalendarApp extends Application {
13 private CalendarPane calendarPane = new CalendarPane();
14 private Button btPrior = new Button("Prior");
15 private Button btNext = new Button("Next");
16 private ComboBox<String> cboLocales = new ComboBox<>();
17 private Locale[] availableLocales = Locale.getAvailableLocales();
18
19 @Override // Override the start method in the Application class
20 public void start(Stage primaryStage) {
21 HBox hBox = new HBox(5);
22 hBox.getChildren().addAll(btPrior, btNext);
23 hBox.setAlignment(Pos.CENTER);
24
25 // Initialize cboLocales with all available locales
26 setAvailableLocales();
27 HBox hBoxLocale = new HBox(5);
28 hBoxLocale.getChildren().addAll(
29 new Label("Select a locale"), cboLocales);
30
31 BorderPane pane = new BorderPane();

M36_LIAN0182_11_SE_C36.indd 14 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.3 Displaying Date and Time 36-15

32 pane.setCenter(calendarPane);
33 pane.setTop(hBoxLocale);
34 hBoxLocale.setAlignment(Pos.CENTER);
35 pane.setBottom(hBox);
36 hBox.setAlignment(Pos.CENTER);
37
38 // Create a scene and place it in the stage
39 Scene scene = new Scene(pane, 600, 300);
40 primaryStage.setTitle("CalendarApp"); // Set the stage title
41 primaryStage.setScene(scene); // Place the scene in the stage
42 primaryStage.show(); // Display the stage
43
44 btPrior.setOnAction(e -> {
45 int currentMonth = calendarPane.getMonth();
46 if (currentMonth == 0) { // The previous month is 11 for Dec
47 calendarPane.setYear(calendarPane.getYear() - 1);
48 calendarPane.setMonth(11);
49 }
50 else {
51 calendarPane.setMonth((currentMonth - 1) % 12);
52 }
53 });
54
55 btNext.setOnAction(e -> {
56 int currentMonth = calendarPane.getMonth();
57 if (currentMonth == 11) // The next month is 0 for Jan
58 calendarPane.setYear(calendarPane.getYear() + 1);
59
60 calendarPane.setMonth((currentMonth + 1) % 12);
61 });
62
63 cboLocales.setOnAction(e ->
64 calendarPane.setLocale(availableLocales[cboLocales.
65 getSelectionModel().getSelectedIndex()]));
66 }
67
68 private void setAvailableLocales() {
69 for (int i = 0; i < availableLocales.length; i++)
70 cboLocales.getItems().add(availableLocales[i]
71 .getDisplayName() + " " + availableLocales[i].toString());
72
73 cboLocales.getSelectionModel().selectFirst();
74 }
75 }

CalendarApp creates the user interface and handles the button actions and combo box item
selections for locales. The Locale.getAvailableLocales() method (line 17) is used to
find all the available locales that have calendars. Its getDisplayName() method returns the
name of each locale and adds the name to the combo box (lines 70–71). When the user selects
a locale name in the combo box, a new locale is passed to calendarPane, and a new calendar
is displayed based on the new locale (lines 63–65).

 36.3.1 How do you set the time zone “PST” for a Calendar object?

 36.3.2 How do you display current date and time in German?

 36.3.3 How do you use the SimpleDateFormat class to display date and time using the
pattern “yyyy.MM.dd hh:mm:ss”?

 36.3.4 In line 66 of Listing 36.2, WorldClockControl.java, Arrays.
sort(availableTimeZones) is used to sort the available time zones. What
happens if you attempt to sort the available locales using Arrays.sort(availa
bleLocales)?

Point
Check

M36_LIAN0182_11_SE_C36.indd 15 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-16 Chapter 36 Internationalization

36.4 Formatting Numbers
You can format numbers based on locales.

Formatting numbers is highly locale dependent. For example, number 5000.555 is displayed
as 5,000.555 in the United States, but as 5 000,555 in France and as 5.000,555 in Germany.

Numbers are formatted using the java.text.NumberFormat class, an abstract base class
that provides the methods for formatting and parsing numbers, as shown in Figure 36.8.

Point
Key

java.text.NumberFormat

+getInstance(): NumberFormat
+getInstance(locale: Locale): NumberFormat
+getIntegerInstance(): NumberFormat
+getIntegerInstance(locale: Locale):
 NumberFormat
+getCurrencyInstance(): NumberFormat
+getNumberInstance(): NumberFormat

+getNumberInstance(locale: Locale):
 NumberFormat
+getPercentInstance(): NumberFormat

+getPercentInstance(locale: Locale):
 NumberFormat
+format (number: double): String

+format (number: long): String

+getMaximumFractionDigits(): int

+setMaximumFractionDigits(newValue: int): void

+getMinimumFractionDigits(): int

+setMinimumFractionDigits(newValue: int): void

+getMaximumIntegerDigits(): int

+setMaximumIntegerDigits(newValue: int):
void

+getMinimumIntegerDigits(): int

+setMinimumIntegerDigits(newValue: int):
void

+isGroupingUsed(): boolean

+setGroupingUsed(newValue: boolean): void
+parse(source: String): Number
+getAvailableLocales(): Locale[]

Returns a default number format for the default locale.
Returns a default number format for the specified locale.
Returns an integer number format for the default locale.
Returns an integer number format for the specified locale.

Returns a currency format for the current default locale.
Same as getInstance().

Same as getInstance(locale).

Returns a percentage format for the default locale.

Returns a percentage format for the specified locale.

Formats a floating-point number.

Formats an integer.

Returns the maximum number of allowed fraction digits.

Sets the maximum number of allowed fraction digits.

Returns the minimum number of allowed fraction digits.

Sets the minimum number of allowed fraction digits.

Returns the maximum number of allowed integer digits in a
 fraction number.

Sets the maximum number of allowed integer digits in a fraction
number.

Returns the minimum number of allowed integer digits in a
 fraction number.

Sets the minimum number of allowed integer digits in a fraction
number.

Returns true if grouping is used in this format. For example, in
the English locale, with grouping on, the number 1234567 is
 formatted as "1,234,567".

Sets whether or not grouping will be used in this format.
Parses string into a number.
Gets the set of locales for which NumberFormats are installed.

Figure 36.8 The NumberFormat class provides the methods for formatting and parsing numbers.

With NumberFormat, you can format and parse numbers for any locale. Your code will
be completely independent of locale conventions for decimal points, thousands-separators,
currency format, and percentage formats.

36.4.1 Plain Number Format
You can get an instance of NumberFormat for the current locale using Number Format.
get Instance() or NumberFormat.getNumberInstance and for the specified locale using
 NumberFormat.getInstance(Locale) or NumberFormat.getNumberInstance(Locale).

M36_LIAN0182_11_SE_C36.indd 16 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.4 Formatting Numbers 36-17

You can then invoke format(number) on the NumberFormat instance to return a formatted
number as a string.

For example, to display number 5000.555 in France, use the following code:

NumberFormat numberFormat = NumberFormat.getInstance(Locale.FRANCE);
System.out.println(numberFormat.format(5000.555));

You can control the display of numbers with such methods as setMaximumFraction Digits
and setMinimumFractionDigits. For example, 5000.555 will be displayed as 5000.6 if
you use numberFormat.setMaximumFractionDigits(1).

36.4.2 Currency Format
To format a number as a currency value, use NumberFormat.getCurrency-
Instance() to get the currency number format for the current locale or NumberFormat.
getCurrencyInstance(Locale) to get the currency number for the specified locale.

For example, to display number 5000.555 as currency in the United States, use the fol-
lowing code:

NumberFormat currencyFormat =
 NumberFormat.getCurrencyInstance(Locale.US);
System.out.println(currencyFormat.format(5000.555));

5000.555 is formatted into $5,000,56. If the locale is set to France, the number will be format-
ted into 5,000,56 €.

36.4.3 Percent Format
To format a number in a percent, use NumberFormat.getPercentInstance() or
NumberFormat.getPercentInstance(Locale) to get the percent number format for
the current locale or the specified locale.

For example, to display number 0.555367 as a percent in the United States, use the follow-
ing code:

NumberFormat percentFormat =
 NumberFormat.getPercentInstance(Locale.US);
System.out.println(percentFormat.format(0.555367));

0.555367 is formatted into 56%. By default, the format truncates the fraction part in a percent
number. If you want to keep three digits after the decimal point, use percentFormat.
setMinimumFractionDigits(3). So 0.555367 would be displayed as 55.537%.

36.4.4 Parsing Numbers
You can format a number into a string using the format(numericalValue) method. You
can also use the parse(String) method to convert a formatted plain number, currency value,
or percent number with the conventions of a certain locale into an instance of java.lang.
Number. The parse method throws a java.text.ParseException if parsing fails. For
example, U.S. $5,000.56 can be parsed into a number using the following statements:

NumberFormat currencyFormat =
 NumberFormat.getCurrencyInstance(Locale.US);
try {
 Number number = currencyFormat.parse("$5,000.56");
 System.out.println(number.doubleValue());
}
catch (java.text.ParseException ex) {
 System.out.println("Parse failed");
}

M36_LIAN0182_11_SE_C36.indd 17 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-18 Chapter 36 Internationalization

36.4.5 The DecimalFormat Class
If you want even more control over the format or parsing, cast the NumberFormat you
get from the factory methods to a java.text.DecimalFormat, which is a subclass of
NumberFormat. You can then use the applyPattern(String pattern) method of the
DecimalFormat class to specify the patterns for displaying the number.

A pattern can specify the minimum number of digits before the decimal point and the maxi-
mum number of digits after the decimal point. The characters '0' and '#' are used to specify
a required digit and an optional digit, respectively. The optional digit is not displayed if it is
zero. For example, the pattern "00.0##" indicates minimum two digits before the decimal
point and maximum three digits after the decimal point. If there are more actual digits before
the decimal point, all of them are displayed. If there are more than three digits after the decimal
point, the number of digits is rounded. Applying the pattern "00.0##", number 111.2226
is formatted to 111.223, number 1111.2226 to 1111.223, number 1.22 to 01.22, and
number 1 to 01.0. Here is the code:

NumberFormat numberFormat = NumberFormat.getInstance(Locale.US);
DecimalFormat decimalFormat = (DecimalFormat)numberFormat;
decimalFormat.applyPattern("00.0##");
System.out.println(decimalFormat.format(111.2226));
System.out.println(decimalFormat.format(1111.2226));
System.out.println(decimalFormat.format(1.22));
System.out.println(decimalFormat.format(1));

The character '%' can be put at the end of a pattern to indicate that a number is formatted as
a percentage. This causes the number to be multiplied by 100 and appends a percent sign %.

36.4.5 Example: Formatting Numbers
Create a loan calculator for computing loans. The calculator allows the user to choose locales,
and displays numbers in accordance with locale-sensitive format. As shown in Figure 36.9, the
user enters interest rate, number of years, and loan amount, then clicks the Compute button to
display the interest rate in percentage format, the number of years in normal number format,
and the loan amount, total payment, and monthly payment in currency format. Listing 36.6
gives the solution to the problem.

lisTing 36.6 NumberFormatDemo.java
 1 import java.util.*;
 2 import java.text.NumberFormat;
 3 import javafx.application.Application;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.ComboBox;
 8 import javafx.scene.control.Label;
 9 import javafx.scene.control.TextField;
 10 import javafx.scene.layout.GridPane;
 11 import javafx.scene.layout.HBox;
 12 import javafx.scene.layout.VBox;
 13 import javafx.stage.Stage;
 14
 15 public class NumberFormatDemo extends Application {
 16 // Combo box for selecting available locales
 17 private ComboBox<String> cboLocale = new ComboBox<>();
 18
 19 // Text fields for interest rate, year, and loan amount
 20 private TextField tfInterestRate = new TextField("6.75");
 21 private TextField tfNumberOfYears = new TextField("15");
 22 private TextField tfLoanAmount = new TextField("107000");

M36_LIAN0182_11_SE_C36.indd 18 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.4 Formatting Numbers 36-19

 23 private TextField tfFormattedInterestRate = new TextField();
 24 private TextField tfFormattedNumberOfYears = new TextField();
 25 private TextField tfFormattedLoanAmount = new TextField();
 26
 27 // Text fields for monthly payment and total payment
 28 private TextField tfTotalPayment = new TextField();
 29 private TextField tfMonthlyPayment = new TextField();
 30
 31 // Compute button
 32 private Button btCompute = new Button("Compute");
 33
 34 // Current locale
 35 private Locale locale = Locale.getDefault();
 36
 37 // Declare locales to store available locales
 38 private Locale locales[] = Calendar.getAvailableLocales();
 39
 40 /** Initialize the combo box */
 41 public void initializeComboBox() {
 42 // Add locale names to the combo box
 43 for (int i = 0; i < locales.length; i++)
 44 cboLocale.getItems().add(locales[i].getDisplayName());
 45 }
 46
 47 @Override // Override the start method in the Application class
 48 public void start(Stage primaryStage) {
 49 initializeComboBox();
 50
 51 // Pane to hold the combo box for selecting locales
 52 HBox hBox = new HBox(5);
 53 hBox.getChildren().addAll(
 54 new Label("Choose a Locale"), cboLocale);
 55
 56 // Pane to hold the input
 57 GridPane gridPane = new GridPane();
 58 gridPane.add(new Label("Interest Rate"), 0, 0);
 59 gridPane.add(tfInterestRate, 1, 0);
 60 gridPane.add(tfFormattedInterestRate, 2, 0);
 61 gridPane.add(new Label("Number of Years"), 0, 1);
 62 gridPane.add(tfNumberOfYears, 1, 1);
 63 gridPane.add(tfFormattedNumberOfYears, 2, 1);
 64 gridPane.add(new Label("Loan Amount"), 0, 2);
 65 gridPane.add(tfLoanAmount, 1, 2);
 66 gridPane.add(tfFormattedLoanAmount, 2, 2);
 67
 68 // Pane to hold the output
 69 GridPane gridPaneOutput = new GridPane();
 70 gridPaneOutput.add(new Label("Monthly Payment"), 0, 0);
 71 gridPaneOutput.add(tfMonthlyPayment, 1, 0);
 72 gridPaneOutput.add(new Label("Total Payment"), 0, 1);
 73 gridPaneOutput.add(tfTotalPayment, 1, 1);
 74
 75 // Set text field alignment
 76 tfFormattedInterestRate.setAlignment(Pos.BASELINE_RIGHT);
 77 tfFormattedNumberOfYears.setAlignment(Pos.BASELINE_RIGHT);
 78 tfFormattedLoanAmount.setAlignment(Pos.BASELINE_RIGHT);
 79 tfTotalPayment.setAlignment(Pos.BASELINE_RIGHT);
 80 tfMonthlyPayment.setAlignment(Pos.BASELINE_RIGHT);
 81
 82 // Set editable false
 83 tfFormattedInterestRate.setEditable(false);

M36_LIAN0182_11_SE_C36.indd 19 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-20 Chapter 36 Internationalization

 84 tfFormattedNumberOfYears.setEditable(false);
 85 tfFormattedLoanAmount.setEditable(false);
 86 tfTotalPayment.setEditable(false);
 87 tfMonthlyPayment.setEditable(false);
 88
 89 VBox vBox = new VBox(5);
 90 vBox.getChildren().addAll(hBox,
 91 new Label("Enter Annual Interest Rate, " +
 92 "Number of Years, and Loan Amount"), gridPane,
 93 new Label("Payment"), gridPaneOutput, btCompute);
 94
 95 // Create a scene and place it in the stage
 96 Scene scene = new Scene(vBox, 400, 300);
 97 primaryStage.setTitle("NumberFormatDemo"); // Set the stage title
 98 primaryStage.setScene(scene); // Place the scene in the stage
 99 primaryStage.show(); // Display the stage
100
101 // Register listeners
102 cboLocale.setOnAction(e -> {
103 locale = locales[cboLocale
104 .getSelectionModel().getSelectedIndex()];
105 computeLoan();
106 });
107
108 btCompute.setOnAction(e -> computeLoan());
109 }
110
111 /** Compute payments and display results locale-sensitive format */
112 private void computeLoan() {
113 // Retrieve input from user
114 double loan = new Double(tfLoanAmount.getText()).doubleValue();
115 double interestRate =
116 new Double(tfInterestRate.getText()).doubleValue() / 1240;
117 int numberOfYears =
118 new Integer(tfNumberOfYears.getText()).intValue();
119
120 // Calculate payments
121 double monthlyPayment = loan * interestRate/
122 (1 - (Math.pow(1 / (1 + interestRate), numberOfYears * 12)));
123 double totalPayment = monthlyPayment * numberOfYears * 12;
124
125 // Get formatters
126 NumberFormat percentFormatter =
127 NumberFormat.getPercentInstance(locale);
128 NumberFormat currencyForm =
129 NumberFormat.getCurrencyInstance(locale);
130 NumberFormat numberForm = NumberFormat.getNumberInstance(locale);
131 percentFormatter.setMinimumFractionDigits(2);
132
133 // Display formatted input
134 tfFormattedInterestRate.setText(
135 percentFormatter.format(interestRate * 12));
136 tfFormattedNumberOfYears.setText
137 (numberForm.format(numberOfYears));
138 tfFormattedLoanAmount.setText(currencyForm.format(loan));
139
140 // Display results in currency format
141 tfMonthlyPayment.setText(currencyForm.format(monthlyPayment));
142 tfTotalPayment.setText(currencyForm.format(totalPayment));
143 }
144 }

M36_LIAN0182_11_SE_C36.indd 20 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.5 Resource Bundles 36-21

Figure 36.9 The locale determines the format of the numbers displayed in the loan calculator.

The computeLoan method (lines 112–143) gets the input on interest rate, number of years,
and loan amount from the user, computes monthly payment and total payment, and displays
annual interest rate in percentage format, number of years in normal number format, and loan
amount, monthly payment, and total payment in locale-sensitive format.

The statement percentFormatter.setMinimumFractionDigits(2) (line 131) sets
the minimum number of fractional parts to 2. Without this statement, 0.075 would be dis-
played as 7% rather than 7.5%.

 36.4.1 Write the code to format number 12345.678 in the United Kingdom locale. Keep
two digits after the decimal point.

 36.4.2 Write the code to format number 12345.678 in U.S. currency.

 36.4.3 Write the code to format number 0.345678 as percentage with at least three digits
after the decimal point.

 36.4.4 Write the code to parse 3,456.78 into a number.

 36.4.5 Write the code that uses the DecimalFormat class to format number 12345.678
using the pattern “0.0000#”.

36.5 Resource Bundles
You can use resource bundles to customize locale-sensitive information.

The NumberFormatDemo in the preceding example displays the numbers, currencies, and
percentages in local customs, but displays all the message strings, titles, and button labels in
English. In this section, you will learn how to use resource bundles to localize message strings,
titles, button labels, and so on.

A resource bundle is a Java class file or text file that provides locale-specific informa-
tion. This information can be accessed by Java programs dynamically. When a locale- specific
resource is needed—a message string, for example—your program can load it from the
resource bundle appropriate for the desired locale. In this way, you can write program code
that is largely independent of the user’s locale, isolating most, if not all, of the locale-specific
information in resource bundles.

With resource bundles, you can write programs that separate the locale-sensitive part of
your code from the locale-independent part. The programs can easily handle multiple locales,
and can easily be modified later to support even more locales.

The resources are placed inside the classes that extend the ResourceBundle class or a
subclass of ResourceBundle. Resource bundles contain key/value pairs. Each key uniquely
identifies a locale-specific object in the bundle. You can use the key to retrieve the object.
ListResourceBundle is a convenient subclass of ResourceBundle that is often used to

Point
Check

Point
Key

M36_LIAN0182_11_SE_C36.indd 21 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-22 Chapter 36 Internationalization

simplify the creation of resource bundles. Here is an example of a resource bundle that contains
four keys using ListResourceBundle:

// MyResource.java: resource file
public class MyResource extends java.util.ListResourceBundle {
 static final Object[][] contents = {
 {"nationalFlag", "us.gif"},
 {"nationalAnthem", "us.au"},
 {"nationalColor", Color.red},
 {"annualGrowthRate", new Double(7.8)}
 };
 public Object[][] getContents() {
 return contents;
 }
}

Keys are case-sensitive strings. In this example, the keys are nationalFlag, national-
Anthem, nationalColor, and annualGrowthRate. The values can be any type of Object.

If all the resources are strings, they can be placed in a convenient text file with the extension
.properties. A typical property file would look like this:

#Wed Jul 01 07:23:24 EST 1998
nationalFlag=us.gif
nationalAnthem=us.au

To retrieve values from a ResourceBundle in a program, you first need to create an instance
of ResourceBundle using one of the following two static methods:

public static final ResourceBundle getBundle(String baseName)
 throws MissingResourceException

public static final ResourceBundle getBundle
 (String baseName, Locale locale) throws MissingResourceException

The first method returns a ResourceBundle for the default locale, and the second method
returns a ResourceBundle for the specified locale. baseName is the base name for a set of
classes, each of which describes the information for a given locale. These classes are named
in Table 36.3.

For example, MyResource_en_BR.class stores resources specific to the United Kingdom,
MyResource_en_US.class stores resources specific to the United States, and MyResource_
en.class stores resources specific to all the English-speaking countries.

1. BaseName_language_country_variant.class

2. BaseName_language_country.class

3. BaseName_language.class

4. BaseName.class

5. BaseName_language_country_variant.properties

6. BaseName_language_country.properties

7. BaseName_language.properties

8. BaseName.properties

Table 36.3 Resource Bundle Naming Conventions

The getBundle method attempts to load the class that matches the specified locale by
language, country, and variant by searching the file names in the order shown in Table 36.3.
The files searched in this order form a resource chain. If no file is found in the resource

M36_LIAN0182_11_SE_C36.indd 22 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.5 Resource Bundles 36-23

chain, the getBundle method raises a MissingResourceException, a subclass of
RuntimeException.

Once a resource bundle object is created, you can use the getObject method to retrieve
the value according to the key. For example,

ResourceBundle res = ResourceBundle.getBundle("MyResource");
String flagFile = (String)res.getObject("nationalFlag");
String anthemFile = (String)res.getObject("nationalAnthem");
Color color = (Color)res.getObject("nationalColor");
 double growthRate = (Double)res.getObject("annualGrowthRate");

Tip
If the resource value is a string, the convenient getString method can be used to
replace the getObject method. The getString method simply casts the value
returned by getObject to a string.

What happens if a resource object you are looking for is not defined in the resource bundle?
Java employs an intelligent look-up scheme that searches the object in the parent file along
the resource chain. This search is repeated until the object is found or all the parent files in the
resource chain have been searched. A MissingResourceException is raised if the search
is unsuccessful.

Let us modify the NumberFormatDemo program in the preceding example so it displays
messages, title, and button labels in multiple languages, as shown in Figure 36.10.

You need to provide a resource bundle for each language. Suppose the program supports
three languages: English (default), Chinese, and French. The resource bundle for the English
language, named MyResource.properties, is given as follows:

#MyResource.properties for English language
Number_Of_Years=Years
Total_Payment=French Total\ Payment
Enter_Interest_Rate=Enter\ Interest\ Rate,\ Years,\ and\ Loan\ Amount
Payment=Payment
Compute=Compute
Annual_Interest_Rate=Interest\ Rate
Number_Formatting=Number\ Formatting\ Demo
Loan_Amount=Loan\ Amount
Choose_a_Locale=Choose\ a\ Locale
Monthly_Payment=Monthly\ Payment

Figure 36.10 The program displays the strings in multiple languages.

M36_LIAN0182_11_SE_C36.indd 23 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-24 Chapter 36 Internationalization

The resource bundle for the Chinese language, named MyResource_zh.properties, is
given as follows:

#MyResource_zh.properties for Chinese language
Choose_a_Locale = \u9078\u64c7\u570b\u5bb6
Enter_Interest_Rate =
 \u8f38\u5165\u5229\u7387,\ u5e74\u9650,\ u8cbo8\u6b3e\u7e3d\u984d
Annual_Interest_Rate = \u5229\u7387
Number_Of_Years = \u5e74\u9650
Loan_Amount = \u8cbo8\u6b3e\u984d\u5ea6
Payment = \u4ed8\u606f
Monthly_Payment = \u6708\u4ed8
Total_Payment = \u7e3d\u984d
Compute = \u8a08\u7b97\u8cbo8\u6b3e\u5229\u606f

The resource bundle for the French language, named MyResource_fr.properties, is
given as follows:

#MyResource_fr.properties for French language
Number_Of_Years=annees
Annual_Interest_Rate=le taux d'interet
Loan_Amount=Le montant du pret
Enter_Interest_Rate=inscrire le taux d'interet, les annees, et le
montant du pret
Payment=paiement
Compute=Calculer l'hypotheque
Number_Formatting=demonstration du formatting des chiffres
Choose_a_Locale=Choisir la localite
Monthly_Payment=versement mensuel
Total_Payment=reglement total

The resource-bundle file should be placed in the class directory (e.g., c:\book for the
examples in this book). The program is given in Listing 36.7.

lisTing 36.7 ResourceBundleDemo.java
 1 import java.util.*;
 2 import java.text.NumberFormat;
 3 import javafx.application.Application;
 4 import javafx.geometry.Pos;
 5 import javafx.scene.Scene;
 6 import javafx.scene.control.Button;
 7 import javafx.scene.control.ComboBox;
 8 import javafx.scene.control.Label;
 9 import javafx.scene.control.TextField;
 10 import javafx.scene.layout.GridPane;
 11 import javafx.scene.layout.HBox;
 12 import javafx.scene.layout.VBox;
 13 import javafx.stage.Stage;
 14
 15 public class ResourceBundleDemo extends Application {
 16 private ResourceBundle res
 17 = ResourceBundle.getBundle("MyResource");
 18
 19 // Create labels
 20 private Label lblInterestRate =
 21 new Label(res.getString("Annual_Interest_Rate"));
 22 private Label lblNumberOfYears =
 23 new Label(res.getString("Number_Of_Years"));
 24 private Label lblLoanAmount =

M36_LIAN0182_11_SE_C36.indd 24 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.5 Resource Bundles 36-25

 25 new Label(res.getString("Loan_Amount"));
 26 private Label lblMonthlyPayment =
 27 new Label(res.getString("Monthly_Payment"));
 28 private Label lblTotalPayment =
 29 new Label(res.getString("Total_Payment"));
 30 private Label lblPayment =
 31 new Label(res.getString("Payment"));
 32 private Label lblChooseALocale =
 33 new Label(res.getString("Choose_a_Locale"));
 34 private Label lblEnterInterestRate =
 35 new Label(res.getString("Enter_Interest_Rate"));
 36
 37 // Combo box for selecting available locales
 38 private ComboBox<String> cboLocale = new ComboBox<>();
 39
 40 // Text fields for interest rate, year, and loan amount
 41 private TextField tfInterestRate = new TextField("6.75");
 42 private TextField tfNumberOfYears = new TextField("15");
 43 private TextField tfLoanAmount = new TextField("107000");
 44 private TextField tfFormattedInterestRate = new TextField();
 45 private TextField tfFormattedNumberOfYears = new TextField();
 46 private TextField tfFormattedLoanAmount = new TextField();
 47
 48 // Text fields for monthly payment and total payment
 49 private TextField tfTotalPayment = new TextField();
 50 private TextField tfMonthlyPayment = new TextField();
 51
 52 // Compute button
 53 private Button btCompute = new Button("Compute");
 54
 55 // Current locale
 56 private Locale locale = Locale.getDefault();
 57
 58 // Declare locales to store available locales
 59 private Locale locales[] = Calendar.getAvailableLocales();
 60
 61 /** Initialize the combo box */
 62 public void initializeComboBox() {
 63 // Add locale names to the combo box
 64 for (int i = 0; i < locales.length; i++)
 65 cboLocale.getItems().add(locales[i].getDisplayName());
 66 }
 67
 68 @Override // Override the start method in the Application class
 69 public void start(Stage primaryStage) {
 70 initializeComboBox();
 71
 72 // Pane to hold the combo box for selecting locales
 73 HBox hBox = new HBox(5);
 74 hBox.getChildren().addAll(lblChooseALocale, cboLocale);
 75
 76 // Pane to hold the input
 77 GridPane gridPane = new GridPane();
 78 gridPane.add(lblInterestRate, 0, 0);
 79 gridPane.add(tfInterestRate, 1, 0);
 80 gridPane.add(tfFormattedInterestRate, 2, 0);
 81 gridPane.add(lblNumberOfYears, 0, 1);
 82 gridPane.add(tfNumberOfYears, 1, 1);
 83 gridPane.add(tfFormattedNumberOfYears, 2, 1);
 84 gridPane.add(lblLoanAmount, 0, 2);

M36_LIAN0182_11_SE_C36.indd 25 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-26 Chapter 36 Internationalization

 85 gridPane.add(tfLoanAmount, 1, 2);
 86 gridPane.add(tfFormattedLoanAmount, 2, 2);
 87
 88 // Pane to hold the output
 89 GridPane gridPaneOutput = new GridPane();
 90 gridPaneOutput.add(lblMonthlyPayment, 0, 0);
 91 gridPaneOutput.add(tfMonthlyPayment, 1, 0);
 92 gridPaneOutput.add(lblTotalPayment, 0, 1);
 93 gridPaneOutput.add(tfTotalPayment, 1, 1);
 94
 95 // Set text field alignment
 96 tfFormattedInterestRate.setAlignment(Pos.BASELINE_RIGHT);
 97 tfFormattedNumberOfYears.setAlignment(Pos.BASELINE_RIGHT);
 98 tfFormattedLoanAmount.setAlignment(Pos.BASELINE_RIGHT);
 99 tfTotalPayment.setAlignment(Pos.BASELINE_RIGHT);
100 tfMonthlyPayment.setAlignment(Pos.BASELINE_RIGHT);
101
102 // Set editable false
103 tfFormattedInterestRate.setEditable(false);
104 tfFormattedNumberOfYears.setEditable(false);
105 tfFormattedLoanAmount.setEditable(false);
106 tfTotalPayment.setEditable(false);
107 tfMonthlyPayment.setEditable(false);
108
109 VBox vBox = new VBox(5);
110 vBox.getChildren().addAll(hBox, lblEnterInterestRate,
111 gridPane, lblPayment, gridPaneOutput, btCompute);
112
113 // Create a scene and place it in the stage
114 Scene scene = new Scene(vBox, 400, 300);
115 primaryStage.setTitle("ResourceBundleDemo"); // Set the stage title
116 primaryStage.setScene(scene); // Place the scene in the stage
117 primaryStage.show(); // Display the stage
118
119 // Register listeners
120 cboLocale.setOnAction(e -> {
121 locale = locales[cboLocale
122 .getSelectionModel().getSelectedIndex()];
123 updateStrings();
124 computeLoan();
125 });
126
127 btCompute.setOnAction(e -> computeLoan());
128 }
129
130 /** Compute payments and display results locale-sensitive format */
131 private void computeLoan() {
132 // Retrieve input from user
133 double loan = new Double(tfLoanAmount.getText()).doubleValue();
134 double interestRate =
135 new Double(tfInterestRate.getText()).doubleValue() / 1240;
136 int numberOfYears =
137 new Integer(tfNumberOfYears.getText()).intValue();
138
139 // Calculate payments
140 double monthlyPayment = loan * interestRate/
141 (1 - (Math.pow(1 / (1 + interestRate), numberOfYears * 12)));
142 double totalPayment = monthlyPayment * numberOfYears * 12;

M36_LIAN0182_11_SE_C36.indd 26 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36.5 Resource Bundles 36-27

143
144 // Get formatters
145 NumberFormat percentFormatter =
146 NumberFormat.getPercentInstance(locale);
147 NumberFormat currencyForm =
148 NumberFormat.getCurrencyInstance(locale);
149 NumberFormat numberForm = NumberFormat.getNumberInstance(locale);
150 percentFormatter.setMinimumFractionDigits(2);
151
152 // Display formatted input
153 tfFormattedInterestRate.setText(
154 percentFormatter.format(interestRate * 12));
155 tfFormattedNumberOfYears.setText
156 (numberForm.format(numberOfYears));
157 tfFormattedLoanAmount.setText(currencyForm.format(loan));
158
159 // Display results in currency format
160 tfMonthlyPayment.setText(currencyForm.format(monthlyPayment));
161 tfTotalPayment.setText(currencyForm.format(totalPayment));
162 }
163
164 /** Update resource strings */
165 private void updateStrings() {
166 res = ResourceBundle.getBundle("MyResource", locale);
167 lblInterestRate.setText(res.getString("Annual_Interest_Rate"));
168 lblNumberOfYears.setText(res.getString("Number_Of_Years"));
169 lblLoanAmount.setText(res.getString("Loan_Amount"));
170 lblTotalPayment.setText(res.getString("Total_Payment"));
171 lblMonthlyPayment.setText(res.getString("Monthly_Payment"));
172 btCompute.setText(res.getString("Compute"));
173 lblChooseALocale.setText(res.getString("Choose_a_Locale"));
174 lblEnterInterestRate.setText(
175 res.getString("Enter_Interest_Rate"));
176 lblPayment.setText(res.getString("Payment"));
177 }
178 }

Property resource bundles are implemented as text files with a .properties extension, and are
placed in the same location as the class files for the program. ListResourceBundles are
provided as Java class files. Because they are implemented using Java source code, new and
modified ListResourceBundles need to be recompiled for deployment. With Property-
ResourceBundles, there is no need for recompilation when translations are modified or
added to the application. Nevertheless, ListResourceBundles provide considerably better
performance than PropertyResourceBundles.

If the resource bundle is not found or a resource object is not found in the resource bundle, a
MissingResourceException is raised. Since MissingResourceException is a subclass
of RuntimeException, you do not need to catch the exception explicitly in the code.

This example is the same as Listing 36.6, NumberFormatDemo.java, except that the
program contains the code for handling resource strings. The updateString method (lines
165–177) is responsible for displaying the locale-sensitive strings. This method is invoked
when a new locale is selected in the combo box.

 36.5.1 How does the getBundle method locate a resource bundle?

 36.5.2 How does the getObject method locate a resource? Point
Check

M36_LIAN0182_11_SE_C36.indd 27 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-28 Chapter 36 Internationalization

36.6 Character Encoding
You can specify an encoding scheme for file IO to read and write Unicode characters.

Java programs use Unicode. When you read a character using text I/O, the Unicode code of
the character is returned. The encoding of the character in the file may be different from the
Unicode encoding. Java automatically converts it to the Unicode. When you write a character
using text I/O, Java automatically converts the Unicode of the character to the encoding speci-
fied for the file. This is pictured in Figure 36.11.

Point
Key

Figure 36.11 The encoding of the file may be different from the encoding used in the
program.

Program

The Unicode of
the character is
returned

A character is converted
into Unicode

The Unicode of
the character is
sent out

A character is converted into the
code for the speci�ed encoding

A character stored in
a speci�ed encoding

You can specify an encoding scheme using a constructor of Scanner/PrintWriter for
text I/O, as follows:

public Scanner(File file, String encodingName)
public PrintWriter(File file, String encodingName)

For a list of encoding schemes supported in Java, see http://download.oracle.com/javase/1.5.0/
docs/guide/intl/encoding.doc.html and mindprod.com/jgloss/encoding.html. For example, you
may use the encoding name GB18030 for simplified Chinese characters, Big5 for traditional
Chinese characters, Cp939 for Japanese characters, Cp933 for Korean characters, and Cp838
for Thai characters.

The following code in Listing 36.8 creates a file using the GB18030 encoding (line 8). You
have to read the text using the same encoding (line 12). The output is shown in Figure 36.12a.

lisTing 36.8 EncodingDemo.java
 1 import java.util.*;
 2 import java.io.*;
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.layout.StackPane;
 6 import javafx.stage.Stage;
 7 import javafx.scene.text.Text;
 8
 9 public class EncodingDemo extends Application {
10 @Override // Override the start method in the Application class
11 public void start(Stage primaryStage) throws Exception {
12 try (
13 PrintWriter output = new PrintWriter("temp.txt", "GB18030");
14) {
15 output.print("\u6B22\u8FCE Welcome \u03b1\u03b2\u03b3");
16 }
17

M36_LIAN0182_11_SE_C36.indd 28 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Chapter Summary 36-29

18 try (
19 Scanner input = new Scanner(new File("temp.txt"), "GB18030");
20) {
21 StackPane pane = new StackPane();
22 pane.getChildren().add(new Text(input.nextLine()));
23
24 // Create a scene and place it in the stage
25 Scene scene = new Scene(pane, 200, 200);
26 primaryStage.setTitle("EncodingDemo"); // Set the stage title
27 primaryStage.setScene(scene); // Place the scene in the stage
28 primaryStage.show(); // Display the stage
29 }
30 }
31 }

Figure 36.12 You can specify an encoding scheme for a text file.

(a) Using GB18030 encoding (b) Using default encoding

locale 36-2
resource bundle 36-21

file encoding scheme 36-28

Key Terms

If you don’t specify an encoding in lines 13 and 19, the system’s default encoding scheme is
used. The US default encoding is ASCII. ASCII code uses 8 bits. Java uses the 16-bit Unicode.
If a Unicode is not an ASCII code, the character '?' is written to the file. Thus, when you
write \u6B22 to an ASCII file, the ? character is written to the file. When you read it back,
you will see the ? character, as shown in Figure 36.12b.

To find out the default encoding on your system, use

System.out.println(System.getProperty("file.encoding"));

The default encoding name is Cp1252 on Windows, which is a variation of ASCII.

 36.6.1 How do you specify an encoding scheme for a text file?

 36.6.2 What would happen if you wrote a Unicode character to an ASCII text file?

 36.6.3 How do you find the default encoding name on your system?

Point
Check

ChapTer summary

1. Java is the first language designed from the ground up to support internationalization.
In consequence, it allows your programs to be customized for any number of countries
or languages without requiring cumbersome changes in the code.

2. Java characters use Unicode in the program. The use of Unicode encoding makes it easy
to write Java programs that can manipulate strings in any international language.

M36_LIAN0182_11_SE_C36.indd 29 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-30 Chapter 36 Internationalization

3. Java provides the Locale class to encapsulate information about a specific locale. A
Locale object determines how locale-sensitive information, such as date, time, and
number, is displayed, and how locale-sensitive operations, such as sorting strings, are
performed. The classes for formatting date, time, and numbers, and for sorting strings
are grouped in the java.text package.

4. Different locales have different conventions for displaying date and time. The java.
text.DateFormat class and its subclasses can be used to format date and time in a
locale-sensitive way for display to the user.

5. To format a number for the default or a specified locale, use one of the factory class
methods in the NumberFormat class to get a formatter. Use getInstance or getNum-
berInstance to get the normal number format. Use getCurrencyInstance to get
the currency number format. Use getPercentInstance to get a format for displaying
percentages.

6. Java uses the ResourceBundle class to separate locale-specific information, such as
status messages and GUI component labels, from the program. The information is stored
outside the source code and can be accessed and loaded dynamically at runtime from a
ResourceBundle, rather than hard-coded into the program.

7. You can specify an encoding for a text file when constructing a PrintWriter or a
Scanner.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

Sections 36.1–36.2
 *36.1 (Unicode viewer) Develop a GUI application that displays Unicode characters, as

shown in Figure 36.13. The user specifies a Unicode in the text field and presses the
Enter key to display a sequence of Unicode characters starting with the specified
Unicode. The Unicode characters are displayed in a scrollable text area of 20 lines.
Each line contains 16 characters preceded by the Unicode that is the code for the
first character on the line.

Figure 36.13 The program displays the Unicode characters.

M36_LIAN0182_11_SE_C36.indd 30 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 36-31

 **36.2 (Display date and time) Write a program that displays the current date and time as
shown in Figure 36.14. The program enables the user to select a locale, time zone,
date style, and time style from the combo boxes.

Figure 36.14 The program displays the current date and time.

Figure 36.15 The calendar and clock display the current date and time.

Section 36.3
 36.3 (Place the calendar and clock in a panel) Write a program that displays the current

date in a calendar and current time in a clock, as shown in Figure 36.15. Enable the
program to run standalone.

 36.4 (Find the available locales and time zone IDs) Write two programs to display the
available locales and time zone IDs using buttons, as shown in Figure 36.16.

Figure 36.16 The program displays available locales and time zones using buttons.

Section 36.4
 *36.5 (Compute loan amortization schedule) Rewrite Exercise 4.22 using JavaFX, as

shown in Figure 36.17. The program allows the user to set the loan amount, loan

M36_LIAN0182_11_SE_C36.indd 31 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

36-32 Chapter 36 Internationalization

period, and interest rate, and displays the corresponding interest, principal, and
balance in the currency format.

 36.6 (Convert dollars to other currencies) Write a program that converts U.S. dollars to
Canadian dollars, German marks, and British pounds, as shown in Figure 36.18.
The user enters the U.S. dollar amount and the conversion rate, and clicks the Con-
vert button to display the converted amount.

Figure 36.17 The program displays the loan payment schedule.

Figure 36.18 The program converts U.S. dollars to Canadian dollars, German marks, and
British pounds.

 36.7 (Compute loan payments) Rewrite Listing 2.8, ComputeLoan.java, to display the
monthly payment and total payment in currency.

 36.8 (Use the DecimalFormat class) Rewrite Exercise 5.8 to display at most two digits
after the decimal point for the temperature using the DecimalFormat class.

Section 36.5
 *36.9 (Use resource bundle) Modify the example for displaying a calendar in Section 36.3.6,

“Example: Displaying a Calendar,” to localize the labels “Choose a locale” and
“Calendar Demo” in French, German, Chinese, or a language of your choice.

 **36.10 (Flag and anthem) Rewrite Listing 16.13, ImageAudioAnimation.java, to use the
resource bundle to retrieve image and audio files.

 (Hint: When a new country is selected, set an appropriate locale for it. Have your
program look for the flag and audio file from the resource file for the locale.)

Section 36.6
 **36.11 (Specify file encodings) Write a program named Exercise36_11Writer

that writes 1307 * 16 Chinese Unicode characters starting from \u0E00 to a
file named Exercise36_11.gb using the GBK encoding scheme. Output 16

M36_LIAN0182_11_SE_C36.indd 32 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 36-33

Figure 36.19 The program displays the file using the specified encoding scheme.

characters per line and separate the characters with spaces. Write a program named
Exercise36_11Reader that reads all the characters from a file using a specified
encoding. Figure 36.19 displays the file using the GBK encoding scheme.

M36_LIAN0182_11_SE_C36.indd 33 5/29/17 9:29 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To explain how a servlet works (§37.2).

■■ To create/develop/run servlets (§37.3).

■■ To deploy servlets on application servers such as Tomcat and GlassFish
(§37.3).

■■ To describe the servlets API (§37.4).

■■ To create simple servlets (§37.5).

■■ To create and process HTML forms (§37.6).

■■ To develop servlets to access databases (§37.7).

■■ To use hidden fields, cookies, and HttpSession to track sessions
(§37.8).

Servlets

CHAPTER

37

M37_LIAN0182_11_SE_C37.indd 1 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-2 Chapter 37 Servlets

37.1 Introduction
Java Servlets is the foundation for developing Web applications using Java.

Servlets are Java programs that run on a Web server. They can be used to process client requests
or produce dynamic webpages. For example, you can write servlets to generate dynamic web-
pages that display stock quotes or process client registration forms and store registration data in
a database. This chapter introduces the concept of Java servlets. You will learn how to develop
Java servlets using NetBeans.

Note
You can develop servlets without using an IDE. However, using an IDE such as NetBeans
can greatly simplify the development task. The tool can automatically create the sup-
porting directories and files. We choose NetBeans because it has the best support for
Java Web development. You can still use your favorite IDE or no IDE for this chapter.

Note
Servlets are the foundation of Java Web technologies. JSP, JSF, and Java Web services
are based on servlets. A good understanding of servlets helps you see the big picture of
Java Web technology and learn JSP, JSF, and Web services.

37.2 HTML and Common Gateway Interface
Java servlets are Java programs that function like CGI programs. They are executed
upon request from a Web browser.

Java servlets run in the Web environment. To understand Java servlets, let us review HTML
and the Common Gateway Interface (CGI).

37.2.1 Static Web Contents
You create webpages using HTML. Your webpages are stored as files on the Web server. The
files are usually stored in the /htdocs directory on Unix, as shown in Figure 37.1. A user types
a URL for the file from a Web browser. The browser contacts the Web server and requests
the file. The server finds the file and returns it to the browser. The browser then displays the
file to the user. This works fine for static information that does not change regardless of who
requests it or when it is requested. Static information is stored in files. The information in the
files can be updated, but at any given time every request for the same document returns exactly
the same result.

Point
Key

Figure 37.1 A Web browser requests a static HTML page from a Web server.

Web Browser

HTML Page

http://www.webserverhost.com/index.html

Web Server

Web Server Host

Host Machine File System

/htdocs/index.html

Point
Key

M37_LIAN0182_11_SE_C37.indd 2 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.2 HTML and Common Gateway Interface 37-3

37.2.2 Dynamic Web Contents and Common Gateway Interface
Not all information, however, is static in nature. Stock quotes are updated whenever a trade
takes place. Election vote counts are updated constantly on Election Day. Weather reports are
frequently updated. The balance in a customer’s bank account is updated whenever a transac-
tion takes place. To view up-to-date information on the Web, the HTML pages for displaying
this information must be generated dynamically. Dynamic Web pages are generated by Web
servers. The Web server needs to run certain programs to process user requests from Web
browsers in order to produce a customized response.

The Common Gateway Interface, or CGI, was proposed to generate dynamic Web content.
The interface provides a standard framework for Web servers to interact with external pro-
grams, known as CGI programs. As shown in Figure 37.2, the Web server receives a request
from a Web browser and passes it to the CGI program. The CGI program processes the request
and generates a response at runtime. CGI programs can be written in any language, but the
Perl language is the most popular choice. CGI programs are typically stored in the /cgi-bin
directory. Here is a pseudocode example of a CGI program for displaying a customer’s bank
account balance:

1. Obtain account ID and password.

2. Verify account ID and password. If it fails, generate an HTML page to report incorrect
account ID and password, and exit.

3. Retrieve account balance from the database; generate an HTML page to display the
account ID and balance.

Figure 37.2 A Web browser requests a dynamic HTML page from a Web server.

Web Browser

HTML Page returned

Send a request URL
Web Server

Execute CGI
Program

Web Server Host

Host Machine File System

/htdocs/index.html

Get CGI Code

Generate
Response

Spawn CGI
Process

URL Example
http://www.server.com/cgi-bin/getBalance.cgi?
accountId=scott&password=tiger

37.2.3 The GET and POST Methods
The two most common HTTP requests, also known as methods, are GET and POST. The Web
browser issues a request using a URL or an HTML form to trigger the Web server to execute a
CGI program. HTML forms will be introduced in §37.6, “HTML Forms.” When issuing a CGI
request directly from a URL, the GET method is used. This URL is known as a query string.
The URL query string consists of the location of the CGI program, the parameters, and their
values. For example, the following URL causes the CGI program getBalance to be invoked
on the server side:

http://www.webserverhost.com/cgi-bin/
 getBalance.cgi?accountId=scott+smith&password=tiger

M37_LIAN0182_11_SE_C37.indd 3 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-4 Chapter 37 Servlets

The ? symbol separates the program from the parameters. The parameter name and value are
associated using the = symbol. Parameter pairs are separated using the & symbol. The +
symbol denotes a space character. So, here accountId is scott smith.

When issuing a request from an HTML form, either a GET method or a POST method can
be used. The form explicitly specifies one of these. If the GET method is used, the data in
the form are appended to the request string as if it were submitted using a URL. If the POST
method is used, the data in the form are packaged as part of the request file. The server program
obtains the data by reading the file. The POST method is more secure than the GET method.

Note
The GET and POST methods both send requests to the Web server. The POST method
always triggers the execution of the corresponding CGI program. The GET method may
not cause the CGI program to be executed, if the previous same request is cached in the
Web browser. Web browsers often cache webpages so that the same request can be
quickly responded to without contacting the Web server. The browser checks the request
sent through the GET method as a URL query string. If the results for the exact same
URL are cached on a disk, then the previous webpages for the URL may be displayed.
To ensure that a new webpage is always displayed, use the POST method. For example,
use a POST method if the request will actually update the database. If your request is
not time sensitive, such as finding the address of a student in the database, use the GET
method to speed up performance.

37.2.4 From CGI to Java Servlets
CGI provides a relatively simple approach for creating dynamic Web applications that accept
a user request, process it on the server side, and return responses to the Web browser. But CGI
is very slow when handling a large number of requests simultaneously, because the Web server
spawns a process for executing each CGI program. Each process has its own runtime environ-
ment that contains and runs the CGI program. It is not difficult to imagine what will happen
if many CGI programs were executed simultaneously. System resource would be quickly
exhausted, potentially causing the server to crash.

Several new approaches have been developed to remedy the performance problem of
CGI programs. Java servlets are one successful technology for this purpose. Java servlets are
Java programs that function like CGI programs. They are executed upon request from a Web
browser. All servlets run inside a servlet container, also referred to as a servlet server or a
servlet engine. A servlet container is a single process that runs in a Java Virtual Machine. The
JVM creates a thread to handle each servlet. Java threads have much less overhead than full-
blown processes. All the threads share the same memory allocated to the JVM. Since the JVM
persists beyond the life cycle of a single servlet execution, servlets can share objects already
created in the JVM. For example, if multiple servlets access the same database, they can share
the connection object. Servlets are much more efficient than CGI.

Servlets have other benefits that are inherent in Java. As Java programs, they are object
oriented, portable, and platform independent. Since you know Java, you can develop servlets
immediately with the support of Java API for accessing databases and network resources.

 37.2.1 What is the common gateway interface?

 37.2.2 What are the differences between the GET and POST methods in an HTML form?

 37.2.3 Can you submit a GET request directly from a URL? Can you submit a POST
request directly from a URL?

 37.2.4 What is wrong in the following URL for submitting a GET request to the servlet
FindScore on host liang at port 8084 with parameter name?

 http://liang:8084/findScore?name=“P Yates”

 37.2.5 What are the differences between CGI and servlets?

Point
Check

M37_LIAN0182_11_SE_C37.indd 4 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.3 Creating and Running Servlets 37-5

37.3 Creating and Running Servlets
An IDE such as NetBeans is an effective tool for creating Java servlet.

To run Java servlets, you need a servlet container. Many servlet containers are available for
free. Two popular ones are Tomcat (developed by Apache, www.apache.org) and Glass-
Fish (developed by Sun, glassfish.dev.java.net). Both Tomcat and GlassFish are bundled
and integrated with NetBeans 7 (Java EE version). When you run a servlet from NetBeans,
Tomcat or GlassFish will be automatically started. You can choose to use either of them,
or any other application server. GlassFish has more features than Tomcat and it takes more
system resource.

37.3.1 Creating a Servlet
Before our introduction to the servlet API, let us look at a simple example to see how servlets
work. A servlet to some extent resembles a JavaFX program. Every Java applet is a subclass
of the Application class. You need to override appropriate methods in the Application
class to implement the application. Every servlet is a subclass of the HttpServlet class. You
need to override appropriate methods in the HttpServlet class to implement the servlet.
Listing 37.1 is a servlet that generates a response in HTML using the doGet method.

Point
Key

Listing 37.1 FirstServlet.java
 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5
 6 public class FirstServlet extends HttpServlet {
 7 /** Handle the HTTP GET method.
 8 * @param request servlet request
 9 * @param response servlet response
10 */
11 protected void doGet(HttpServletRequest request,
12 HttpServletResponse response)
13 throws ServletException, java.io.IOException {
14 response.setContentType("text/html");
15 java.io.PrintWriter out = response.getWriter();
16 // output your page here
17 out.println("<html>");
18 out.println("<head>");
19 out.println("<title>Servlet</title>");
20 out.println("</head>");
21 out.println("<body>");
22 out.println("Hello, Java Servlets");
23 out.println("</body>");
24 out.println("</html>");
25 out.close();
26 }
27 }

The doGet method (line 11) is invoked when the Web browser issues a request using the GET
method. The doGet method has two parameters: request and response. request is for
obtaining data from the Web browser, and response is for sending data back to the browser.
Line 14 indicates that data are sent back to the browser as text/html. Line 15 obtains an instance
of PrintWriter for actually outputting data to the browser.

M37_LIAN0182_11_SE_C37.indd 5 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-6 Chapter 37 Servlets

37.3.2 Creating Servlets in NetBeans
NetBeans is updated frequently. The current version is 8 at the time of this writing. To create
a servlet in NetBeans 8, you have to first create a Web project, as follows:

1. Choose File, New Project to display the New Project dialog box. Choose Java Web in
the Categories section and Web Application in the Projects section, as shown in Figure
37.3a. Click Next to display the New Web Application dialog box, as shown in Figure
37.3b.

2. Enter liangweb in the Project Name field and c:\book in the Project Location field.
Check Set as Main Project. Click Next to display the dialog box for specifying server
and settings, as shown in Figure 37.4.

3. Select GlassFish Server 4.1 for server and Java EE 7 Web for Java EE Version.
Click Finish to create the Web project, as shown in Figure 37.5.

Now you can create a servlet in the project, as follows:

1. Right-click the liangweb node in the project pane to display a context menu. Choose
New, Servlet to display the New Servlet dialog box, as shown in Figure 37.6.

Figure 37.3 (a) Choose Web Application to create a Web project. (b) Specify project name and location.

(a) (b)

Figure 37.4 Choose servers and settings.

M37_LIAN0182_11_SE_C37.indd 6 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.3 Creating and Running Servlets 37-7

Figure 37.5 A new Web project is created.

Figure 37.6 You can create a servlet in the New Servlet dialog box.

2. Enter FirstServlet in the Class Name field and chapter37 in the Package field
and click Next to display the Configure Servlet Deployment dialog box, as shown in
Figure 37.7.

3. Select the checkbox to add the servlet information to web.xml and click Finish to create
the servlet. A servlet template is now created in the project, as shown in Figure 37.8.

M37_LIAN0182_11_SE_C37.indd 7 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-8 Chapter 37 Servlets

Figure 37.7 You need to click the checkbox to add servlet information to web.xml.

Figure 37.8 A new servlet class is created in the project.

M37_LIAN0182_11_SE_C37.indd 8 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.4 The Servlet API 37-9

4. Replace the code in the content pane for the servlet using the code in Listing 37.1.

5. Right-click liangweb node in the Project pane to display a context menu and choose
Run to launch the Web server. In the Web browser, enter http://localhost:8084/liang-
web/FirstServlet in the URL. You will now see the servlet result displayed, as shown
in Figure 37.9.

Figure 37.9 Servlet result is displayed in a Web browser.

Note
If the servlet is not displayed in the browser, do the following: 1. Make sure that you
have added the servlet in the xml.web file. 2. Right-click liangweb and choose Clean
and Build. 3. Right-click liangweb and choose Run. Reenter http://localhost:8084/
liangweb/FirstServlet in the URL. If still not working, exit NetBeans and restart it.

Note
Depending on the server setup, you may have a port number other than 8084.

Tip
You can deploy a Web application using a Web archive file (WAR) to a Web application
server (e.g., Tomcat). To create a WAR file for the liangweb project, right-click liangweb
and choose Build Project. You can now locate liangweb.war in the c:\book\liang-
web\dist folder. To deploy on Tomcat, simply place liangweb.war into the webapps
directory. When Tomcat starts, the .war file will be automatically installed.

Note
If you wish to use NetBeans as the development tool and Tomcat as the deployment
server, please see Supplement V.E, “Tomcat Tutorial.”

 37.3.1 Can you display an HTML file (e.g. c:\ test.html) by typing the complete file
name in the Address field of Internet Explorer? Can you run a servlet by simply
typing the servlet class file name?

 37.3.2 How do you create a Web project in NetBeans?

 37.3.3 How do you create a servlet in NetBeans?

 37.3.4 How do you run a servlet in NetBeans?

 37.3.5 When you run a servlet from NetBeans, what is the port number by default? What
happens if the port number is already in use?

 37.3.6 What is the .war file? How do you obtain a .war file for a Web project in NetBeans?

37.4 The Servlet API
The Servlet interface defines the methods init, service, and destroy to manag-
ing the life-cylce of a serlvet.

Point
Check

Point
Key

M37_LIAN0182_11_SE_C37.indd 9 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-10 Chapter 37 Servlets

You have to know the servlet API in order to understand the source code in Listing3 7.1,
in FirstServlet.java. The servlet API provides the interfaces and classes that support servlets.
These interfaces and classes are grouped into two packages, javax.servlet and javax.
servlet.http, as shown in Figure 37.10. The javax.servlet package provides basic
interfaces, and the javax.servlet.http package provides classes and interfaces derived
from them, which provide specific means for servicing HTTP requests.

37.4.1 The Servlet Interface
The javax.servlet.Servlet interface defines the methods that all servlets must implement.
The methods are listed below:

/** Invoked for every servlet constructed */
public void init() throws ServletException;

/** Invoked to respond to incoming requests */
public void service(ServletRequest request, ServletResponse response)
 throws ServletException, IOException;

/** Invoked to release resource by the servlet */
public void destroy();

The init, service, and destroy methods are known as life-cycle methods and are called
in the following sequence (see Figure 37.11):

1. The init method is called when the servlet is first created and is not called again as long
as the servlet is not destroyed. This resembles an applet’s init method, which is invoked
after the applet is created and is not invoked again as long as the applet is not destroyed.

Figure 37.10 The servlet API contains interfaces and classes that you use to develop and
run servlets.

ServletCon�g

ServletRequest

ServletResponse

javax.Servlet* javax.Servlet.http.*

Servlet GenericServlet HttpServlet

HttpServletRequest

HttpServletResponse

Figure 37.11 The JVM uses the init, service, and destroy methods to control the servlet.

Loaded Initialized

Invokes the
init method

Served DestroyedCreated

Creates the
servlet using
its constructor

JVM loads
the servlet
class

Invokes the
service method

Invokes destroy() after
a timeout period has
passed or the Web
server is being stopped

The same servlet is invoked again, bypassing
the Loaded, Created, and Initialized states, as
long as it has not been destroyed

Servlet is
invoked for
the �rst time

Invokes the
service method

M37_LIAN0182_11_SE_C37.indd 10 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.4 The Servlet API 37-11

2. The service method is invoked each time the server receives a request for the servlet.
The server spawns a new thread and invokes service.

3. The destroy method is invoked after a timeout period has passed or as the Web server
is terminated. This method releases resources for the servlet.

37.4.2 The GenericServlet Class, ServletConfig Interface,
and HttpServlet Class

The javax.servlet.GenericServlet class defines a generic, protocol-independent
servlet. It implements javax.servlet.Servlet and javax.servlet.ServletConfig.
ServletConfig is an interface that defines four methods (getInitParameter, getInit-
ParameterNames, getServletContext, and getServletName) for obtaining information
from a Web server during initialization. All the methods in Servlet and ServletConfig
are implemented in GenericServlet except service. Therefore, GenericServlet is an
abstract class.

The javax.servlet.http.HttpServlet class defines a servlet for the HTTP protocol.
It extends GenericServlet and implements the service method. The service method
is implemented as a dispatcher of HTTP requests. The HTTP requests are processed in the
following methods:

■■ doGet is invoked to respond to a GET request.

■■ doPost is invoked to respond to a POST request.

■■ doDelete is invoked to respond to a DELETE request. Such a request is normally
used to delete a file on the server.

■■ doPut is invoked to respond to a PUT request. Such a request is normally used to
send a file to the server.

■■ doOptions is invoked to respond to an OPTIONS request. This returns information
about the server, such as which HTTP methods it supports.

■■ doTrace is invoked to respond to a TRACE request. Such a request is normally used
for debugging. This method returns an HTML page that contains appropriate trace
information.

All these methods use the following signature:

protected void doXxx(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, java.io.IOException

The HttpServlet class provides default implementation for these methods. You need to
override doGet, doPost, doDelete, and doPut if you want the servlet to process a GET,
POST, DELETE, or PUT request. By default, nothing will be done. Normally, you should not
override the doOptions method unless the servlet implements new HTTP methods beyond
those implemented by HTTP 1.1. Nor is there any need to override the doTrace method.

Note
GET and POST requests are often used, whereas DELETE, PUT, OPTIONS, and TRACE
are not. For more information about these requests, please refer to the HTTP 1.1 specifica-
tion from www.cis.ohio-state.edu/htbin/rfc/rfc2068.html.

Note
Although the methods in HttpServlet are all nonabstract, HttpServlet is defined
as an abstract class. Thus you cannot create a servlet directly from HttpServlet.
Instead you have to define your servlet by extending HttpServlet.

M37_LIAN0182_11_SE_C37.indd 11 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-12 Chapter 37 Servlets

The relationship of these interfaces and classes is shown in Figure 37.12.

Figure 37.12 HttpServlet inherits abstract class GenericServlet, which implements interfaces Servlet and
ServletConfig.

«interface»
javax.servlet.ServletCon�g

+getInitParameter(name: String):
String

+getInitParameterNames():
Enumeration

+getServletContext(): ServletContext

+getServletName(): String

«interface»
javax.servlet.Servlet

+init(con�g: ServletCon�g): void

+service(req: ServletRequest, resp:
ServletResponse): void

+destroy(): void

+getServletInfo(): String

javax.servlet.GenericServlet javax.servlet.http.HttpServlet

+doGet(req: HttpServletRequest,
resp: HttpServletResponse): void

+doPost(req: HttpServletRequest,
resp: HttpServletResponse): void

+doDelete(req: HttpServletRequest,
resp: HttpServletResponse): void

+doPut(req: HttpServletRequest,
resp: HttpServletResponse): void

+doOptions(req: HttpServletRequest,
resp: HttpServletResponse): void

+doTrace(req: HttpServletRequest,
resp: HttpServletResponse): void

37.4.3 The ServletRequest Interface
and HttpServlet Request Interface

Every doXxx method in the HttpServlet class has a parameter of the HttpServlet Request
type, which is an object that contains HTTP request information, including parameter name and
values, attributes, and an input stream. HttpServletRequest is a subinterface of Servlet-
Request. ServletRequest defines a more general interface to provide information for all
kinds of clients. The frequently used methods in these two interfaces are shown in Figure 37.13.

37.4.4 The ServletResponse Interface
and HttpServlet Response Interface

Every doXxx method in the HttpServlet class has a parameter of the HttpServlet-
Response type, which is an object that assists a servlet in sending a response to the client.
HttpServletResponse is a subinterface of ServletResponse. ServletResponse defines
a more general interface for sending output to the client.

The frequently used methods in these two interfaces are shown in Figure 37.14.

 37.4.1 Describe the life cycle of a servlet.

 37.4.2 Suppose you started the Web server, ran the following servlet twice by issuing an
appropriate URL from the Web browser, and finally stopped Tomcat. What was
displayed on the console when the servlet was first invoked? What was displayed
on the console when the servlet was invoked for the second time? What was
 displayed on the console when Tomcat was shut down?

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
public class Test extends HttpServlet {
 public Test() {
 System.out.println("Constructor called");
 }

 /** Initialize variables */
 public void init() throws ServletException {

Point
Check

M37_LIAN0182_11_SE_C37.indd 12 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.4 The Servlet API 37-13

Figure 37.13 HttpServletRequest is a subinterface of ServletRequest.

«interface»
javax.servlet.http.HttpServletRequest

+getHeader(name: String): String

+getMethod(): String

+getQueryString(): String

+getCookies():
javax.servlet.http.Cookies[]

+getSession(create: boolean):
HttpSession

«interface»
javax.servlet.ServletRequest

+getParamter(name: String): String

+getParameterValues(): String[]

+getRemoteAddr(): String

+getRemoteHost(): String

Returns the value of a request parameter as a String, or null if the parameter
does not exist. Request parameters are extra information sent with the request.
For HTTP servlets, parameters are contained in the query string or posted
from data. Only use this method when you are sure that the parameter has only
one value. If it has more than one value, use getParameterValues.

Returns the Internet Protocol (IP) address of the client that sent the request.

Returns the fully quali�ed name of the client that sent the request, or the IP
address of the client if the name cannot be determined.

Returns the value of the speci�ed request header as a String. If the request did not include
a header of the speci�ed name, this method returns null. Since the header name is case-
insensitive, you can use this method with any request header.

Returns the name of the HTTP method with which this request was made; for example,
GET, POST, DELETE, PUT, OPTIONS, or TRACE.

Returns the query string that is contained in the request URL after the path. This method
returns null if the URL does not have a query string.

Returns an array containing all of the Cookie objects the client sent with the request. This
method returns null if no cookies were sent. Using cookies is introduced in Section
37.8.2, “Session Tracking Using Cookies.”

getSession(true) returns the current session associated with this request. If the request does
not have a session, it creates one. getSession(false) returns the current session associated
with the request. If the request does not have a session, it returns null. The getSession
method is used in session tracking, which is introduced in Section 37.8.3, “Session
Tracking Using the Servlet API.”

Figure 37.14 HttpServletResponse is a subinterface of ServletResponse.

«interface»
javax.servlet.http.HttpServletResponse

+addCookie(Cookie cookie): void

«interface»
javax.servlet.ServletResponse

+getWriter(): java.io.PrintWriter

+setContentType(type: String): void

Returns a PrintWriter object that can send character text to the client.

Sets the content type of the response being sent to the client before writing response
 to the client. When you are writing HTML to the client, the type should be set to
 “text/html.” For plain text, use “text/plain.” For sending a gif image to the
 browser, use “image/gif.”

Adds the speci�ed cookie to the response. This method can be called multiple times
to set more than one cookie.

 System.out.println("init called");
 }

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 System.out.println("doGet called");
 }

 /** Clean up resources */
 public void destroy() {
 System.out.println("destroy called");
 }
}

M37_LIAN0182_11_SE_C37.indd 13 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-14 Chapter 37 Servlets

37.5 Creating Servlets
You can define a servlet class by extending the HttpServlet class and implement the
doGet and doPost methods.

Servlets are the opposite of Java applets. Java applets run from a Web browser on the client
side. To write Java programs, you define classes. To write a Java applet, you define a class
that extends the Applet class. The Web browser runs and controls the execution of the applet
through the methods defined in the Applet class. Similarly, to write a Java servlet, you define
a class that extends the HttpServlet class. The servlet container runs and controls the execu-
tion of the servlet through the methods defined in the HttpServlet class. Like a Java applet,
a servlet does not have a main method. A servlet depends on the servlet engine to call the
methods. Every servlet has a structure like the one shown below:

package chapter37;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class MyServlet extends HttpServlet {
 /** Called by the servlet engine to initialize servlet */
 public void init() throws ServletException {
 ...
 }

 /** Process the HTTP Get request */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 ...
 }

 /** Process the HTTP Post request */
 public void doPost(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {
 ...
 }

 /** Called by the servlet engine to release resource */
 public void destroy() {
 ...
 }

 // Other methods if necessary
}

The servlet engine controls the servlets using init, doGet, doPost, destroy, and other meth-
ods. By default, the doGet and doPost methods do nothing. To handle a GET request, you need to
override the doGet method; to handle a POST request, you need to override the doPost method.

Listing 37.2 gives a simple Java servlet that generates a dynamic webpage for displaying
the current time, as shown in Figure 37.15.

Point
Key

Figure 37.15 Servlet CurrentTime displays the current time.

M37_LIAN0182_11_SE_C37.indd 14 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.6 HTML Forms 37-15

The HttpServlet class has a doGet method. The doGet method is invoked when the browser
issues a request to the servlet using the GET method. Your servlet class should override the doGet
method to respond to the GET request. In this case, you write the code to display the current time.

Servlets return responses to the browser through an HttpServletResponse object.
Since the setContentType("text/html") method sets the MIME type to “text/html,” the
browser will display the response in HTML. The getWriter method returns a PrintWriter
object for sending HTML back to the client.

Note
The URL query string uses the GET method to issue a request to the servlet. The current
time may not be current if the webpage for displaying the current time is cached. To ensure
that a new current time is displayed, refresh the page in the browser. In the next example,
you will write a new servlet that uses the POST method to obtain the current time.

37.6 HTML Forms
HTML forms are used to collect and submit data from a client to a Web server.

HTML forms enable you to submit data to the Web server in a convenient form. As shown
in Figure 37.16, the form can contain text fields, text area, check boxes, combo boxes, lists,
radio buttons, and buttons.

Point
Key

Figure 37.16 An HTML form may contain text fields, radio buttons, combo boxes, lists,
check boxes, text areas, and buttons.

Listing 37.2 CurrentTime.java
 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6
 7 public class CurrentTime extends HttpServlet {
 8 /** Process the HTTP Get request */
 9 public void doGet(HttpServletRequest request, HttpServletResponse
10 response) throws ServletException, IOException {
11 response.setContentType("text/html");
12 PrintWriter out = response.getWriter();
13 out.println("<p>The current time is " + new java.util.Date());
14 out.close(); // Close stream
15 }
16 }

M37_LIAN0182_11_SE_C37.indd 15 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-16 Chapter 37 Servlets

The HTML code for creating the form in Figure 37.16 is given in Listing 37.3. (If you are
unfamiliar with HTML, please see Supplement V.A, “HTML and XHTML Tutorial.”)

Listing 37.3 StudentRegistrationForm.html
 1 <!--An HTML Form Demo -->
 2 <html>
 3 <head>
 4 <title>Student Registration Form</title>
 5 </head>
 6 <body>
 7 <h3>Student Registration Form</h3>
 8
 9 <form action = "GetParameters"
10 method = "get">
11 <!-- Name text fields -->
12 <p><label>Last Name</label>
13 <input type = "text" name = "lastName" size = "20" />
14 <label>First Name</label>
15 <input type = "text" name = "firstName" size = "20" />
16 <label>MI</label>
17 <input type = "text" name = "mi" size = "1" /></p>
18
19 <!-- Gender radio buttons -->
20 <p><label>Gender:</label>
21 <input type = "radio" name = "gender" value = "M" checked />
22 Male
23 <input type = "radio" name = "gender" value = "F" /> Female</p>
24
25 <!-- Major combo box -->
26 <p><label>Major</label>
27 <select name = "major" size = "1">
28 <option value = "CS">Computer Science</option>
29 <option value = "Math">Mathematics</option>
30 <option>English</option>
31 <option>Chinese</option>
32 </select>
33
34 <!-- Minor list -->
35 <label>Minor</label>
36 <select name = "minor" size = "2" multiple>
37 <option>Computer Science</option>
38 <option>Mathematics</option>
39 <option>English</option>
40 <option>Chinese</option>
41 </select></p>
42
43 <!-- Hobby check boxes -->
44 <p><label>Hobby:</label>
45 <input type = "checkbox" name = "tennis" /> Tennis
46 <input type = "checkbox" name = "golf" /> Golf
47 <input type = "checkbox" name = "pingPong" checked />Ping Pong
48 </p>
49
50 <!-- Remark text area -->
51 <p>Remarks:</p>
52 <p><textarea name = "remarks" rows = "3" cols = "56">
53 </textarea></p>
54

M37_LIAN0182_11_SE_C37.indd 16 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.6 HTML Forms 37-17

The following HTML tags are used to construct HTML forms:

■■ <form> . . . </form> defines a form body. The attributes for the <form> tag are
action and method. The action attribute specifies the server program to be exe-
cuted on the Web server when the form is submitted. The method attribute is either
get or post.

■■ <label> . . . </label> simply defines a label.

■■ <input> defines an input field. The attributes for this tag are type, name, value,
checked, size, and maxlength. The type attribute specifies the input type. Possible
types are text for a one-line text field, radio for a radio button, and checkbox for
a check box. The name attribute gives a formal name for the attribute. This name
attribute is used by the servlet program to retrieve its associated value. The names of
the radio buttons in a group must be identical. The value attribute specifies a default
value for a text field and text area. The checked attribute indicates whether a radio
button or a check box is initially checked. The size attribute specifies the size of a
text field, and the maxlength attribute specifies the maximum length of a text field.

■■ <select> . . . </select> defines a combo box or a list. The attributes for this tag are
name, size, and multiple. The size attribute specifies the number of rows visible
in the list. The multiple attribute specifies that multiple values can be selected from
a list. Set size to 1 and do not use a multiple for a combo box.

■■ <option> . . . </option> defines a selection list within a <select> . . .
</select> tag. This tag may be used with the value attribute to specify a value for
the selected option (e.g., <option value = "CS">Computer Science). If no value
is specified, the selected option is the value.

■■ <textarea> . . . </textarea> defines a text area. The attributes are name, rows,
and cols. The rows and cols attributes specify the number of rows and columns
in a text area.

Note
You can create the HTML file from NetBeans. Right-click liangweb and choose New,
HTML, to display the New HTML File dialog box. Enter StudentRegistrationForm
as the file name and click Finish to create the file.

37.6.1 Obtaining Parameter Values from HTML Forms
To demonstrate how to obtain parameter values from an HTML form, Listing 37.4 creates
a servlet to obtain all the parameter values from the preceding student registration form in
Figure 37.16 and display their values, as shown in Figure 37.17.

55 <!-- Submit and Reset buttons -->
56 <p><input type = "submit" value = "Submit" />
57 <input type = "reset" value = "Reset" /></p>
58 </form>
59 </body>
60 </html>

Listing 37.4 GetParameters.java
 1 package chapter37;
 2
 3 import javax.servlet.*;

M37_LIAN0182_11_SE_C37.indd 17 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-18 Chapter 37 Servlets

Figure 37.17 The servlet displays the parameter values entered in Figure 37.16.

The HTML form is already created in StudentRegistrationForm.html and displayed in
 Figure 37.16. Since the action for the form is GetParameters, clicking the Submit button
invokes the GetParameters servlet.

Each GUI component in the form has a name attribute. The servlet uses the name attribute
in the getParameter(attributeName) method to obtain the parameter value as a string. In
case of a list with multiple values, use the getParameterValues(attributeName) method
to return the parameter values in an array of strings (line 20).

 4 import javax.servlet.http.*;
 5 import java.io.*;
 6
 7 public class GetParameters extends HttpServlet {
 8 /** Process the HTTP Post request */
 9 public void doGet(HttpServletRequest request, HttpServletResponse
10 response) throws ServletException, IOException {
11 response.setContentType("text/html");
12 PrintWriter out = response.getWriter();
13
14 // Obtain parameters from the client
15 String lastName = request.getParameter("lastName");
16 String firstName = request.getParameter("firstName");
17 String mi = request.getParameter("mi");
18 String gender = request.getParameter("gender");
19 String major = request.getParameter("major");
20 String[] minors = request.getParameterValues("minor");
21 String tennis = request.getParameter("tennis");
22 String golf = request.getParameter("golf");
23 String pingPong = request.getParameter("pingPong");
24 String remarks = request.getParameter("remarks");
25
26 out.println("Last Name: " + lastName + " First Name: "
27 + firstName + " MI: " + mi + "
");
28 out.println("Gender: " + gender + "
");
29 out.println("Major: " + major + " Minor: ");
30
31 if (minors != null)
32 for (int i = 0; i < minors.length; i++)
33 out.println(minors[i] + " ");
34
35 out.println("
 Tennis: " + tennis + " Golf: " +
36 golf + " PingPong: " + pingPong + "
");
37 out.println("Remarks: " + remarks + "");
38 out.close(); // Close stream
39 }
40 }

M37_LIAN0182_11_SE_C37.indd 18 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.6 HTML Forms 37-19

You may optionally specify the value attribute in a text field, text area, combo box, list,
check box, or radio button in an HTML form. For text field and text area, the value attribute
specifies a default value to be displayed in the text field and text area. The user can type in
new values to replace it. For combo box, list, check box, and radio button, the value attribute
specifies the parameter value to be returned from the getParameter and getParameter-
Values methods. If the value attribute is not specified for a combo box or a list, it returns
the selected string from the combo box or the list. If the value attribute is not specified for a
radio button or a check box, it returns string on for a checked radio button or a checked check
box, and returns null for an unchecked check box.

Note
If an attribute does not exist, the getParameter(attributeName) method
returns null. If an empty value of the parameter is passed to the servlet, the
 getParameter (attributeName) method returns a string with an empty value. In
this case, the length of the string is 0.

37.6.2 Obtaining Current Time Based on Locale and Time Zone
This example creates a servlet that processes the GET and POST requests. The GET request
generates a form that contains a combo box for locale and a combo box for time zone, as shown
in Figure 37.18a. The user can choose a locale and a time zone from this form to submit a POST
request to obtain the current time based on the locale and time zone, as shown in Figure 37.18b.

Figure 37.18 The GET method in the TimeForm servlet displays a form in (a), and the POST method
in the TimeForm servlet displays the time based on locale and time zone in (b).

(a) (b)

Listing 37.5 gives the servlet.

Listing 37.5 TimeForm.java
 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.util.*;
 7 import java.text.*;
 8
 9 public class TimeForm extends HttpServlet {
10 private static final String CONTENT_TYPE = "text/html";
11 private Locale[] allLocale = Locale.getAvailableLocales();
12 private String[] allTimeZone = TimeZone.getAvailableIDs();
13
14 /** Process the HTTP Get request */
15 public void doGet(HttpServletRequest request, HttpServletResponse

M37_LIAN0182_11_SE_C37.indd 19 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-20 Chapter 37 Servlets

When you run this servlet, the servlet TimeForm’s doGet method is invoked to generate the
time form dynamically. The method of the form is POST, and the action invokes the same
servlet, TimeForm. When the form is submitted to the server, the doPost method is invoked
to process the request.

The variables allLocale and allTimeZone (lines 11–12), respectively, hold all the avail-
able locales and time zone IDs. The names of the locales are displayed in the locale list. The
values for the locales are the indexes of the locales in the array allLocale. The time zone IDs

16 response) throws ServletException, IOException {
17 response.setContentType(CONTENT_TYPE);
18 PrintWriter out = response.getWriter();
19 out.println("<h3>Choose locale and time zone</h3>");
20 out.println("<form method=\"post\" action=" +
21 "TimeForm>");
22 out.println("Locale <select size=\"1\" name=\"locale\">");
23
24 // Fill in all locales
25 for (int i = 0; i < allLocale.length; i++) {
26 out.println("<option value=\"" + i +"\">" +
27 allLocale[i].getDisplayName() + "</option>");
28 }
29 out.println("</select>");
30
31 // Fill in all time zones
32 out.println("<p>Time Zone<select size=\"1\" name=\"timezone\">");
33 for (int i = 0; i < allTimeZone.length; i++) {
34 out.println("<option value=\"" + allTimeZone[i] +"\">" +
35 allTimeZone[i] + "</option>");
36 }
37 out.println("</select>");
38
39 out.println("<p><input type=\"submit\" value=\"Submit\" >");
40 out.println("<input type=\"reset\" value=\"Reset\"></p>");
41 out.println("</form>");
42 out.close(); // Close stream
43 }
44
45 /** Process the HTTP Post request */
46 public void doPost(HttpServletRequest request, HttpServletResponse
47 response) throws ServletException, IOException {
48 response.setContentType(CONTENT_TYPE);
49 PrintWriter out = response.getWriter();
50 out.println("<html>");
51 int localeIndex = Integer.parseInt(
52 request.getParameter("locale"));
53 String timeZoneID = request.getParameter("timezone");
54 out.println("<head><title>Current Time</title></head>");
55 out.println("<body>");
56 Calendar calendar =
57 new GregorianCalendar(allLocale[localeIndex]);
58 TimeZone timeZone = TimeZone.getTimeZone(timeZoneID);
59 DateFormat dateFormat = DateFormat.getDateTimeInstance(
60 DateFormat.FULL, DateFormat.FULL, allLocale[localeIndex]);
61 dateFormat.setTimeZone(timeZone);
62 out.println("Current time is " +
63 dateFormat.format(calendar.getTime()) + "</p>");
64 out.println("</body></html>");
65 out.close(); // Close stream
66 }
67 }

M37_LIAN0182_11_SE_C37.indd 20 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.7 Database Programming in Servlets 37-21

are strings. They are displayed in the time zone list. They are also the values for the list. The
indexes of the locale and the time zone are passed to the servlet as parameters. The doPost
method obtains the values of the parameters (lines 51–53) and finds the current time based on
the locale and time zone.

Note
If you choose an Asian locale (e.g., Chinese, Korean, or Japanese), the time will not be
displayed properly, because the default character encoding is UTF-8. To fix this problem,
insert the following statement in line 48 to set an international character encoding:

response.setCharacterEncoding("GB18030");

For information on encoding, see Section 36.6.6, “Character Encoding.”

37.7 Database Programming in Servlets
Servlets can access and manipulate databases using JDBC.

Many dynamic Web applications use databases to store and manage data. Servlets can connect
to any relational database via JDBC. In Chapter 34, Java Database Programming, you learned
how to create Java programs to access and manipulate relational databases via JDBC. Con-
necting a servlet to a database is no different from connecting a Java application or applet to a
database. If you know Java servlets and JDBC, you can combine them to develop interesting
and practical Web-based interactive projects.

To demonstrate connecting to a database from a servlet, let us create a servlet that processes
a registration form. The client enters data in an HTML form and submits the form to the server,
as shown in Figure 37.19. The result of the submission is shown in Figure 37.20. The server
collects the data from the form and stores them in a database.

Point
Key

Figure 37.19 The HTML form enables the user to enter student information.

Figure 37.20 The servlet processes the form and stores data in a database.

M37_LIAN0182_11_SE_C37.indd 21 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-22 Chapter 37 Servlets

The registration data are stored in an Address table consisting of the following fields:
firstName, mi, lastName, street, city, state, zip, telephone, and email, defined
in the following statement:

create table Address (
 firstname varchar(25),
 mi char(1),
 lastname varchar(25),
 street varchar(40),
 city varchar(20),
 state varchar(2),
 zip varchar(5),
 telephone varchar(10),
 email varchar(30)
)

MySQL, Oracle, and Access were used in Chapter 34. You can use any relational database. If
the servlet uses a database driver other than the JDBC-ODBC driver (e.g., the MySQL JDBC
driver and the Oracle JDBC driver), you need to add the JDBC driver (e.g., mysqljdbc.jar for
MySQL and ojdbc6.jar for Oracle) into the Libraries node in the project.

Create an HTML file named SimpleRegistration.html in Listing 37.6 for collecting the
data and sending them to the database using the post method.

Listing 37.6 SimpleRegistration.html
 1 <!-- SimpleRegistration.html -->
 2 <html>
 3 <head>
 4 <title>Simple Registration without Confirmation</title>
 5 </head>
 6 <body>
 7 Please register to your instructor’s student address book.
 8
 9 <form method = "post" action = "SimpleRegistration">
10 <p>Last Name *
11 <input type = "text" name = "lastName">
12 First Name *
13 <input type = "text" name = "firstName">
14 MI <input type = "text" name = "mi" size = "3">
15 </p>
16 <p>Telephone
17 <input type = "text" name = "telephone" size = "20">
18 Email
19 <input type = "text" name = "email" size = "28">
20 </p>
21 <p>Street <input type = "text" name = "street" size = "50">
22 </p>
23 <p>City <input type = "text" name = "city" size = "23">
24 State
25 <select size = "1" name = "state">
26 <option value = "GA">Georgia-GA</option>
27 <option value = "OK">Oklahoma-OK</option>
28 <option value = "IN">Indiana-IN</option>
29 </select>
30 Zip <input type = "text" name = "zip" size = "9">
31 </p>
32 <p><input type = "submit" name = "Submit" value = "Submit">
33 <input type = "reset" value = "Reset">
34 </p>
35 </form>

M37_LIAN0182_11_SE_C37.indd 22 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.7 Database Programming in Servlets 37-23

36 <p>* required fields</p>
37 </body>
38 </html>

Create the servlet named SimpleRegistration in Listing 37.7.

Listing 37.7 SimpleRegistration.java
 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.sql.*;
 7
 8 public class SimpleRegistration extends HttpServlet {
 9 // Use a prepared statement to store a student into the database
10 private PreparedStatement pstmt;
11
12 /** Initialize variables */
13 public void init() throws ServletException {
14 initializeJdbc();
15 }
16
17 /** Process the HTTP Post request */
18 public void doPost(HttpServletRequest request, HttpServletResponse
19 response) throws ServletException, IOException {
20 response.setContentType("text/html");
21 PrintWriter out = response.getWriter();
22
23 // Obtain parameters from the client
24 String lastName = request.getParameter("lastName");
25 String firstName = request.getParameter("firstName");
26 String mi = request.getParameter("mi");
27 String phone = request.getParameter("telephone");
28 String email = request.getParameter("email");
29 String address = request.getParameter("street");
30 String city = request.getParameter("city");
31 String state = request.getParameter("state");
32 String zip = request.getParameter("zip");
33
34 try {
35 if (lastName.length() == 0 || firstName.length() == 0) {
36 out.println("Last Name and First Name are required");
37 }
38 else {
39 storeStudent(lastName, firstName, mi, phone, email,
40 address, city, state, zip);
41
42 out.println(firstName + " " + lastName +
43 " is now registered in the database");
44 }
45 }
46 catch(Exception ex) {
47 out.println("Error: " + ex.getMessage());
48 }
49 finally {
50 out.close(); // Close stream
51 }
52 }
53

M37_LIAN0182_11_SE_C37.indd 23 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-24 Chapter 37 Servlets

The init method (line 13) is executed once when the servlet starts. After the servlet has
started, the servlet can be invoked many times as long as it is alive in the servlet container. Load
the driver and connect to the database from the servlet’s init method (line 14). If a prepared
statement or a callable statement is used, it should also be created in the init method. In this
example, a prepared statement is desirable, because the servlet always uses the same insert
statement with different values.

A servlet can connect to any relational database via JDBC. The initializeJdbc method
in this example connects to a MySQL database (line 58). Once connected, it creates a prepared
statement for inserting a student record into the database. MySQL is used in this example; you
can replace it with any relational database.

Last name and first name are required fields. If either of them is empty, the servlet sends an
error message to the client (lines 35–36). Otherwise, the servlet stores the data in the database
using the prepared statement.

 37.7.1 What would be displayed if you changed the content type to html/plain in
 Listing 37.2, CurrentTime.java?

 37.7.2 The statement out.close() is used to close the output stream to response. Why
isn’t this statement enclosed in a try-catch block?

Point
Check

54 /** Initialize database connection */
55 private void initializeJdbc() {
56 try {
57 // Load the JDBC driver
58 Class.forName("com.mysql.jdbc.Driver");
59 System.out.println("Driver loaded");
60
61 // Establish a connection
62 Connection conn = DriverManager.getConnection
63 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
64 System.out.println("Database connected");
65
66 // Create a Statement
67 pstmt = conn.prepareStatement("insert into Address " +
68 "(lastName, firstName, mi, telephone, email, street, city, "
69 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
70 }
71 catch (Exception ex) {
72 ex.printStackTrace();
73 }
74 }
75
76 /** Store a student record to the database */
77 private void storeStudent(String lastName, String firstName,
78 String mi, String phone, String email, String address,
79 String city, String state, String zip) throws SQLException {
80 pstmt.setString(1, lastName);
81 pstmt.setString(2, firstName);
82 pstmt.setString(3, mi);
83 pstmt.setString(4, phone);
84 pstmt.setString(5, email);
85 pstmt.setString(6, address);
86 pstmt.setString(7, city);
87 pstmt.setString(8, state);
88 pstmt.setString(9, zip);
89 pstmt.executeUpdate();
90 }
91 }

M37_LIAN0182_11_SE_C37.indd 24 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.8 Session Tracking 37-25

 37.7.3 What happens when you invoke request.getParameter(paramName) if
paramName does not exist?

 37.7.4 How do you write a text field, combo box, check box, and text area in an HTML
form?

 37.7.5 How do you retrieve the parameter value for a text field, combo box, list, check box,
radio button, and text area from an HTML form?

 37.7.6 If the servlet uses a database driver other than the JDBC-ODBC driver, where should
the driver be placed in NetBeans?

37.8 Session Tracking
You can perform session tracking using hidden values in a form, using cookies, or
using HttpSession.

Web servers use the Hyper-Text Transport Protocol (HTTP). HTTP is a stateless protocol. An
HTTP Web server cannot associate requests from a client, and therefore treats each request
independently. This protocol works fine for simple Web browsing, where each request typi-
cally results in an HTML file or a text file being sent back to the client. Such simple requests
are isolated. However, the requests in interactive Web applications are often related. Consider
the two requests in the following scenario:

Request 1: A client sends registration data to the server; the server then returns the data to
the user for confirmation.

Request 2: The client confirms the data that was submitted in Request 1.

In Request 2, the data submitted in Request 1 are confirmed. These two requests are related in
a session. A session can be defined as a series of related interactions between a single client
and the Web server over a period of time. Tracking data among requests in a session is known
as session tracking.

This section introduces three techniques for session tracking: using hidden values, using
cookies, and using the session tracking tools from servlet API.

37.8.1 Session Tracking Using Hidden Values
You can track a session by passing data from the servlet to the client as hidden values in a
dynamically generated HTML form by including a field like this one:

<input type = "hidden" name = "lastName" value = "Smith">

The next request will submit the data back to the servlet. The servlet retrieves this hidden value
just like any other parameter value, using the getParameter method.

Let us use an example to demonstrate using hidden values in a form. The example creates a
servlet that processes a registration form. The client submits the form using the GET method,
as shown in Figure 37.21. The server collects the data in the form, displays them to the client,
and asks the client for confirmation, as shown in Figure 37.22. The client confirms the data
by submitting the request with the hidden values using the POST method. Finally, the servlet
writes the data to a database.

Create an HTML form named Registration.html in Listing 37.8 for collecting the data and
sending it to the database using the GET method for confirmation. This file is almost identical
to Listing 37.6, SimpleRegistration.html except that the action is replaced by Registra-
tion (line 9).

Point
Key

M37_LIAN0182_11_SE_C37.indd 25 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-26 Chapter 37 Servlets

Figure 37.22 The servlet asks the client for confirmation of the input.

Figure 37.21 The registration form collects user information.

Listing 37.8 Registration.html
 1 <!-- Registration.html -->
 2 <html>
 3 <head>
 4 <title>Using Hidden Data for Session Tracking</title>
 5 </head>
 6 <body>
 7 Please register to your instructor’s student address book.
 8
 9 <form method = "get" action = "Registration">
10 <p>Last Name *
11 <input type = "text" name = "lastName">
12 First Name *
13 <input type = "text" name = "firstName">
14 MI <input type = "text" name = "mi" size = "3">
15 </p>
16 <p>Telephone
17 <input type = "text" name = "telephone" size = "20">
18 Email

M37_LIAN0182_11_SE_C37.indd 26 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.8 Session Tracking 37-27

Create the servlet named Registration in Listing 37.9.

19 <input type = "text" name = "email" size = "28">
20 </p>
21 <p>Street <input type = "text" name = "street" size = "50">
22 </p>
23 <p>City <input type = "text" name = "city" size = "23">
24 State
25 <select size = "1" name = "state">
26 <option value = "GA">Georgia-GA</option>
27 <option value = "OK">Oklahoma-OK</option>
28 <option value = "IN">Indiana-IN</option>
29 </select>
30 Zip <input type = "text" name = "zip" size = "9">
31 </p>
32 <p><input type = "submit" name = "Submit" value = "Submit">
33 <input type = "reset" value = "Reset">
34 </p>
35 </form>
36 <p>* required fields</p>
37 </body>
38 </html>

Listing 37.9 Registration.java
 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.sql.*;
 7
 8 public class Registration extends HttpServlet {
 9 // Use a prepared statement to store a student into the database
 10 private PreparedStatement pstmt;
 11
 12 /** Initialize variables */
 13 public void init() throws ServletException {
 14 initializeJdbc();
 15 }
 16
 17 /** Process the HTTP Get request */
 18 public void doGet(HttpServletRequest request, HttpServletResponse
 19 response) throws ServletException, IOException {
 20 response.setContentType("text/html");
 21 PrintWriter out = response.getWriter();
 22
 23 // Obtain data from the form
 24 String lastName = request.getParameter("lastName");
 25 String firstName = request.getParameter("firstName");
 26 String mi = request.getParameter("mi");
 27 String telephone = request.getParameter("telephone");
 28 String email = request.getParameter("email");
 29 String street = request.getParameter("street");
 30 String city = request.getParameter("city");
 31 String state = request.getParameter("state");
 32 String zip = request.getParameter("zip");
 33
 34 if (lastName.length() == 0 || firstName.length() == 0) {
 35 out.println("Last Name and First Name are required");
 36 }

M37_LIAN0182_11_SE_C37.indd 27 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-28 Chapter 37 Servlets

 37 else {
 38 // Ask for confirmation
 39 out.println("You entered the following data");
 40 out.println("<p>Last name: " + lastName);
 41 out.println("
First name: " + firstName);
 42 out.println("
MI: " + mi);
 43 out.println("
Telephone: " + telephone);
 44 out.println("
Email: " + email);
 45 out.println("
Address: " + street);
 46 out.println("
City: " + city);
 47 out.println("
State: " + state);
 48 out.println("
Zip: " + zip);
 49
 50 // Set the action for processing the answers
 51 out.println("<p><form method=\"post\" action=" +
 52 "Registration>");
 53 // Set hidden values
 54 out.println("<p><input type=\"hidden\" " +
 55 "value=" + lastName + " name=\"lastName\">");
 56 out.println("<p><input type=\"hidden\" " +
 57 "value=" + firstName + " name=\"firstName\">");
 58 out.println("<p><input type=\"hidden\" " +
 59 "value=" + mi + " name=\"mi\">");
 60 out.println("<p><input type=\"hidden\" " +
 61 "value=" + telephone + " name=\"telephone\">");
 62 out.println("<p><input type=\"hidden\" " +
 63 "value=" + email + " name=\"email\">");
 64 out.println("<p><input type=\"hidden\" " +
 65 "value=" + street + " name=\"street\">");
 66 out.println("<p><input type=\"hidden\" " +
 67 "value=" + city + " name=\"city\">");
 68 out.println("<p><input type=\"hidden\" " +
 69 "value=" + state + " name=\"state\">");
 70 out.println("<p><input type=\"hidden\" " +
 71 "value=" + zip + " name=\"zip\">");
 72 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 73 out.println("</form>");
 74 }
 75
 76 out.close(); // Close stream
 77 }
 78
 79 /** Process the HTTP Post request */
 80 public void doPost(HttpServletRequest request, HttpServletResponse
 81 response) throws ServletException, IOException {
 82 response.setContentType("text/html");
 83 PrintWriter out = response.getWriter();
 84
 85 try {
 86 String lastName = request.getParameter("lastName");
 87 String firstName = request.getParameter("firstName");
 88 String mi = request.getParameter("mi");
 89 String telephone = request.getParameter("telephone");
 90 String email = request.getParameter("email");
 91 String street = request.getParameter("street");
 92 String city = request.getParameter("city");
 93 String state = request.getParameter("state");
 94 String zip = request.getParameter("zip");
 95
 96 storeStudent(lastName, firstName, mi, telephone, email,
 97 street, city, state, zip);

M37_LIAN0182_11_SE_C37.indd 28 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.8 Session Tracking 37-29

The servlet processes the GET request by generating an HTML page that displays the client’s
input and asks for the client’s confirmation. The input data consist of hidden values in the newly
generated forms, so they will be sent back in the confirmation request. The confirmation request
uses the POST method. The servlet retrieves the hidden values and stores them in the database.

Since the first request does not write anything to the database, it is appropriate to use the
GET method. Since the second request results in an update to the database, the POST method
must be used.

Note
The hidden values could also be sent from the URL query string if the request used the
GET method.

 98
 99 out.println(firstName + " " + lastName +
100 " is now registered in the database");
101 }
102 catch(Exception ex) {
103 out.println("Error: " + ex.getMessage());
104 }
105 }
106
107 /** Initialize database connection */
108 private void initializeJdbc() {
109 try {
110 // Load the JDBC driver
111 Class.forName("com.mysql.jdbc.Driver");
112 System.out.println("Driver loaded");
113
114 // Establish a connection
115 Connection conn = DriverManager.getConnection
116 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
117 System.out.println("Database connected");
118
119 // Create a Statement
120 pstmt = conn.prepareStatement("insert into Address " +
121 "(lastName, firstName, mi, telephone, email, street, city, "
122 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
123 }
124 catch (Exception ex) {
125 System.out.println(ex);
126 }
127 }
128
129 /** Store a student record to the database */
130 private void storeStudent(String lastName, String firstName,
131 String mi, String phone, String email, String address,
132 String city, String state, String zip) throws SQLException {
133 pstmt.setString(1, lastName);
134 pstmt.setString(2, firstName);
135 pstmt.setString(3, mi);
136 pstmt.setString(4, phone);
137 pstmt.setString(5, email);
138 pstmt.setString(6, address);
139 pstmt.setString(7, city);
140 pstmt.setString(8, state);
141 pstmt.setString(9, zip);
142 pstmt.executeUpdate();
143 }
144 }

M37_LIAN0182_11_SE_C37.indd 29 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-30 Chapter 37 Servlets

37.8.2 Session Tracking Using Cookies
You can track sessions using cookies, which are small text files that store sets of name/value
pairs on the disk in the client’s computer. Cookies are sent from the server through the instruc-
tions in the header of the HTTP response. The instructions tell the browser to create a cookie
with a given name and its associated value. If the browser already has a cookie with the key
name, the value will be updated. The browser will then send the cookie with any request
submitted to the same server. Cookies can have expiration dates set, after which they will not
be sent to the server. The javax.servlet.http.Cookie is used to create and manipulate
cookies, as shown in Figure 37.23.

Figure 37.23 Cookie stores a name/value pair and other information about the cookie.

javax.servlet.http.Cookie

+Cookie(name: String, value: String)

+getName(): String

+getValue(): String

+setValue(newValue: String): void

+getMaxAge(): int

+setMaxAge(expiration: int): void

+getSecure(): boolean

+setSecure(flag: boolean): void

+getComment(): String

+setComment(purpose: String): void

Creates a cookie with the specified name-value pair.

Returns the name of the cookie.

Returns the value of the cookie.

Assigns a new value to a cookie after the cookie is created.

Returns the maximum age of the cookie, specified in seconds.

Specifies the maximum age of the cookie. By default, this value is –1,
which implies that the cookie persists until the browser exits. If you
set this value to 0, the cookie is deleted.

Returns true if the browser is sending cookies only over a secure protocol.

Indicates to the browser whether the cookie should only be sent using a
secure protocol, such as HTTPS or SSL.

Returns the comment describing the purpose of this cookie, or null if the
cookie has no comment.

Sets the comment for this cookie.

To send a cookie to the browser, use the addCookie method in the HttpServlet-
Response class, as shown below:

response.addCookie(cookie);

where response is an instance of HttpServletResponse.
To obtain cookies from a browser, use

request.getCookies();

where request is an instance of HttpServletRequest.
To demonstrate the use of cookies, let us create an example that accomplishes the same

task as Listing 37.9, Registration.java. Instead of using hidden values for session tracking, it
uses cookies.

Create the servlet named RegistrationWithCookie in Listing 37.10. Create an HTML file
named RegistrationWithCookie.html that is identical to Registration.html except that the action
is replaced by RegistrationWithCookie.java.

Listing 37.10 RegistrationWithCookie.java
 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;

M37_LIAN0182_11_SE_C37.indd 30 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.8 Session Tracking 37-31

 6 import java.sql.*;
 7
 8 public class RegistrationWithCookie extends HttpServlet {
 9 private static final String CONTENT_TYPE = "text/html";
 10 // Use a prepared statement to store a student into the database
 11 private PreparedStatement pstmt;
 12
 13 /** Initialize variables */
 14 public void init() throws ServletException {
 15 initializeJdbc();
 16 }
 17
 18 /** Process the HTTP Get request */
 19 public void doGet(HttpServletRequest request, HttpServletResponse
 20 response) throws ServletException, IOException {
 21 response.setContentType("text/html");
 22 PrintWriter out = response.getWriter();
 23
 24 // Obtain data from the form
 25 String lastName = request.getParameter("lastName");
 26 String firstName = request.getParameter("firstName");
 27 String mi = request.getParameter("mi");
 28 String telephone = request.getParameter("telephone");
 29 String email = request.getParameter("email");
 30 String street = request.getParameter("street");
 31 String city = request.getParameter("city");
 32 String state = request.getParameter("state");
 33 String zip = request.getParameter("zip");
 34
 35 if (lastName.length() == 0 || firstName.length() == 0) {
 36 out.println("Last Name and First Name are required");
 37 }
 38 else {
 39 // Create cookies and send cookies to browsers
 40 Cookie cookieLastName = new Cookie("lastName", lastName);
 41 // cookieLastName.setMaxAge(1000);
 42 response.addCookie(cookieLastName);
 43 Cookie cookieFirstName = new Cookie("firstName", firstName);
 44 response.addCookie(cookieFirstName);
 45 // cookieFirstName.setMaxAge(0);
 46 Cookie cookieMi = new Cookie("mi", mi);
 47 response.addCookie(cookieMi);
 48 Cookie cookieTelephone = new Cookie("telephone", telephone);
 49 response.addCookie(cookieTelephone);
 50 Cookie cookieEmail = new Cookie("email", email);
 51 response.addCookie(cookieEmail);
 52 Cookie cookieStreet = new Cookie("street", street);
 53 response.addCookie(cookieStreet);
 54 Cookie cookieCity = new Cookie("city", city);
 55 response.addCookie(cookieCity);
 56 Cookie cookieState = new Cookie("state", state);
 57 response.addCookie(cookieState);
 58 Cookie cookieZip = new Cookie("zip", zip);
 59 response.addCookie(cookieZip);
 60
 61 // Ask for confirmation
 62 out.println("You entered the following data");
 63 out.println("<p>Last name: " + lastName);
 64 out.println("
First name: " + firstName);
 65 out.println("
MI: " + mi);
 66 out.println("
Telephone: " + telephone);

M37_LIAN0182_11_SE_C37.indd 31 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-32 Chapter 37 Servlets

 67 out.println("
Email: " + email);
 68 out.println("
Street: " + street);
 69 out.println("
City: " + city);
 70 out.println("
State: " + state);
 71 out.println("
Zip: " + zip);
 72
 73 // Set the action for processing the answers
 74 out.println("<p><form method=\"post\" action=" +
 75 "RegistrationWithCookie>");
 76 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 77 out.println("</form>");
 78 }
 79
 80 out.close(); // Close stream
 81 }
 82
 83 /** Process the HTTP Post request */
 84 public void doPost(HttpServletRequest request, HttpServletResponse
 85 response) throws ServletException, IOException {
 86 response.setContentType(CONTENT_TYPE);
 87 PrintWriter out = response.getWriter();
 88
 89 String lastName = "";
 90 String firstName = "";
 91 String mi = "";
 92 String telephone = "";
 93 String email = "";
 94 String street = "";
 95 String city = "";
 96 String state = "";
 97 String zip = "";
 98
 99 // Read the cookies
100 Cookie[] cookies = request.getCookies();
101
102 // Get cookie values
103 for (int i = 0; i < cookies.length; i++) {
104 if (cookies[i].getName().equals("lastName"))
105 lastName = cookies[i].getValue();
106 else if (cookies[i].getName().equals("firstName"))
107 firstName = cookies[i].getValue();
108 else if (cookies[i].getName().equals("mi"))
109 mi = cookies[i].getValue();
110 else if (cookies[i].getName().equals("telephone"))
111 telephone = cookies[i].getValue();
112 else if (cookies[i].getName().equals("email"))
113 email = cookies[i].getValue();
114 else if (cookies[i].getName().equals("street"))
115 street = cookies[i].getValue();
116 else if (cookies[i].getName().equals("city"))
117 city = cookies[i].getValue();
118 else if (cookies[i].getName().equals("state"))
119 state = cookies[i].getValue();
120 else if (cookies[i].getName().equals("zip"))
121 zip = cookies[i].getValue();
122 }
123
124 try {
125 storeStudent(lastName, firstName, mi, telephone, email, street,
126 city, state, zip);
127

M37_LIAN0182_11_SE_C37.indd 32 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.8 Session Tracking 37-33

You have to create a cookie for each value you want to track, using the Cookie class’s only
constructor, which defines a cookie’s name and value as shown below (line 40):

Cookie cookieLastName = new Cookie("lastName", lastName);

To send the cookie to the browser, use a statement like this one (line 42):

response.addCookie(cookieLastName);

If a cookie with the same name already exists in the browser, its value is updated; otherwise,
a new cookie is created.

128 out.println(firstName + " " + lastName +
129 " is now registered in the database");
130
131 out.close(); // Close stream
132 }
133 catch(Exception ex) {
134 out.println("Error: " + ex.getMessage());
135 }
136 }
137
138 /** Initialize database connection */
139 private void initializeJdbc() {
140 try {
141 // Load the JDBC driver
142 Class.forName("com.mysql.jdbc.Driver");
143 System.out.println("Driver loaded");
144
145 // Establish a connection
146 Connection conn = DriverManager.getConnection
147 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
148 System.out.println("Database connected");
149
150 // Create a Statement
151 pstmt = conn.prepareStatement("insert into Address " +
152 "(lastName, firstName, mi, telephone, email, street, city, "
153 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
154 }
155 catch (Exception ex) {
156 System.out.println(ex);
157 }
158 }
159
160 /** Store a student record to the database */
161 private void storeStudent(String lastName, String firstName,
162 String mi, String telephone, String email, String street,
163 String city, String state, String zip) throws SQLException {
164 pstmt.setString(1, lastName);
165 pstmt.setString(2, firstName);
166 pstmt.setString(3, mi);
167 pstmt.setString(4, telephone);
168 pstmt.setString(5, email);
169 pstmt.setString(6, street);
170 pstmt.setString(7, city);
171 pstmt.setString(8, state);
172 pstmt.setString(9, zip);
173 pstmt.executeUpdate();
174 }
175 }

M37_LIAN0182_11_SE_C37.indd 33 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-34 Chapter 37 Servlets

Cookies are automatically sent to the Web server with each request from the client. The
servlet retrieves all the cookies into an array using the getCookies method (line 100):

Cookie[] cookies = request.getCookies();

To obtain the name of the cookie, use the getName method (line 104):

String name = cookies[i].getName();

The cookie’s value can be obtained using the getValue method:

String value = cookies[i].getValue();

Cookies are stored as strings just like form parameters and hidden values. If a cookie represents
a numeric value, you have to convert it into an integer or a double, using the parseInt method
in the Integer class or the parseDouble method in the Double class.

By default, a newly created cookie persists until the browser exits. However, you can set
an expiration date, using the setMaxAge method, to allow a cookie to stay in the browser for
up to 2,147,483,647 seconds (approximately 24,855 days).

37.8.3 Session Tracking Using the Servlet API
You have now learned both session tracking using hidden values and session tracking using
cookies. These two session-tracking methods have problems. They send data to the browser
either as hidden values or as cookies. The data are not secure, and anybody with knowledge
of computers can obtain them. The hidden data are in HTML form, which can be viewed from
the browser. Cookies are stored in the Cache directory of the browser. Because of security
concerns, some browsers do not accept cookies. The client can turn the cookies off and limit
their number. Another problem is that hidden data and cookies pass data as strings. You cannot
pass objects using these two methods.

To address these problems, Java servlet API provides the javax.servlet.http
. HttpSession interface, which provides a way to identify a user across more than one page
request or visit to a website and to store information about that user. The servlet container uses
this interface to create a session between an HTTP client and an HTTP server. The session
persists for a specified time period, across more than one connection or page request from the
user. A session usually corresponds to one user, who may visit a site many times. The session
enables tracking of a large set of data. The data can be stored as objects and are secure because
they are kept on the server side.

To use the Java servlet API for session tracking, first create a session object using the
 getSession() method in the HttpServletRequest interface:

HttpSession session = request.getSession();

This obtains the session or creates a new session if the client does not have a session on
the server.

The HttpSession interface provides the methods for reading and storing data to the
 session, and for manipulating the session, as shown in Figure 37.24.

Note
HTTP is stateless. So how does the server associate a session with multiple requests
from the same client? This is handled behind the scenes by the servlet container and is
transparent to the servlet programmer.

To demonstrate using HttpSession, let us rewrite Listing 37.9, Registration.java, and List-
ing 37.10, RegistrationWithCookie.java. Instead of using hidden values or cookies for session
tracking, it uses servlet HttpSession.

M37_LIAN0182_11_SE_C37.indd 34 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.8 Session Tracking 37-35

Create the servlet named RegistrationWithHttpSession in Listing 37.11. Create an
HTML file named RegistrationWithHttpSession.html that is identical to Regis-
tration.html except that the action is replaced by RegistrationWithHttpSession.

Figure 37.24 HttpSession establishes a persistent session between a client with multiple requests and the server.

<<interface>>
javax.servlet.http.HttpSession

+getAttribute(name: String): Object

+setAttribute(name: String, value: Object):
 void

+getId(): String

+getLastAccessedTime(): long

+invalidate(): void

+isNew(): boolean

+removeAttribute(name: String): void

+getMaxInactiveInterval(): int
+setMaxInactiveInterval(interval: int): void

Returns the object bound with the specified name in this session, or
null if no object is bound under the name.

Binds an object to this session, using the specified name. If an
object of the same name is already bound to the session, the
object is replaced.

Returns a string containing the unique identifier assigned to this
session. The identifier is assigned by the servlet container and
is implementation dependent.

Returns the last time the client sent a request associated with this
session, as the number of milliseconds since midnight January
1, 1970 GMT, and marked by the time the container received
the request.

Invalidates this session, then unbinds any objects bound to it.

Returns true if the session was just created in the current request.

Removes the object bound with the specified name from this ses-
sion. If the session does not have an object bound with the
specified name, this method does nothing.

Returns the time, in seconds, between client requests before the
servlet container will invalidate this session. A negative time
indicates that the session will never time-out. Use setMaxInac-
tiveInterval to specify this value.

Listing 37.11 RegistrationWithHttpSession.java
 1 package chapter37;
 2
 3 import javax.servlet.*;
 4 import javax.servlet.http.*;
 5 import java.io.*;
 6 import java.sql.*;
 7
 8 public class RegistrationWithHttpSession extends HttpServlet {
 9 // Use a prepared statement to store a student into the database
 10 private PreparedStatement pstmt;
 11
 12 /** Initialize variables */
 13 public void init() throws ServletException {
 14 initializeJdbc();
 15 }
 16
 17 /** Process the HTTP Get request */
 18 public void doGet(HttpServletRequest request, HttpServletResponse
 19 response) throws ServletException, IOException {

M37_LIAN0182_11_SE_C37.indd 35 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-36 Chapter 37 Servlets

 20 // Set response type and output stream to the browser
 21 response.setContentType("text/html");
 22 PrintWriter out = response.getWriter();
 23
 24 // Obtain data from the form
 25 String lastName = request.getParameter("lastName");
 26 String firstName = request.getParameter("firstName");
 27 String mi = request.getParameter("mi");
 28 String telephone = request.getParameter("telephone");
 29 String email = request.getParameter("email");
 30 String street = request.getParameter("street");
 31 String city = request.getParameter("city");
 32 String state = request.getParameter("state");
 33 String zip = request.getParameter("zip");
 34
 35 if (lastName.length() == 0 || firstName.length() == 0) {
 36 out.println("Last Name and First Name are required");
 37 }
 38 else {
 39 // Create an Address object
 40 Address address = new Address();
 41 address.setLastName(lastName);
 42 address.setFirstName(firstName);
 43 address.setMi(mi);
 44 address.setTelephone(telephone);
 45 address.setEmail(email);
 46 address.setStreet(street);
 47 address.setCity(city);
 48 address.setState(state);
 49 address.setZip(zip);
 50
 51 // Get an HttpSession or create one if it does not exist
 52 HttpSession httpSession = request.getSession();
 53
 54 // Store student object to the session
 55 httpSession.setAttribute("address", address);
 56
 57 // Ask for confirmation
 58 out.println("You entered the following data");
 59 out.println("<p>Last name: " + lastName);
 60 out.println("<p>First name: " + firstName);
 61 out.println("<p>MI: " + mi);
 62 out.println("<p>Telephone: " + telephone);
 63 out.println("<p>Email: " + email);
 64 out.println("<p>Address: " + street);
 65 out.println("<p>City: " + city);
 66 out.println("<p>State: " + state);
 67 out.println("<p>Zip: " + zip);
 68
 69 // Set the action for processing the answers
 70 out.println("<p><form method=\"post\" action=" +
 71 "RegistrationWithHttpSession>");
 72 out.println("<p><input type=\"submit\" value=\"Confirm\" >");
 73 out.println("</form>");
 74 }
 75
 76 out.close(); // Close stream
 77 }
 78
 79 /** Process the HTTP Post request */

M37_LIAN0182_11_SE_C37.indd 36 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.8 Session Tracking 37-37

 80 public void doPost(HttpServletRequest request, HttpServletResponse
 81 response) throws ServletException, IOException {
 82 // Set response type and output stream to the browser
 83 response.setContentType("text/html");
 84 PrintWriter out = response.getWriter();
 85
 86 // Obtain the HttpSession
 87 HttpSession httpSession = request.getSession();
 88
 89 // Get the Address object in the HttpSession
 90 Address address = (Address)(httpSession.getAttribute("address"));
 91
 92 try {
 93 storeStudent(address);
 94
 95 out.println(address.getFirstName() + " " + address.getLastName()
 96 + " is now registered in the database");
 97 out.close(); // Close stream
 98 }
 99 catch(Exception ex) {
100 out.println("Error: " + ex.getMessage());
101 }
102 }
103
104 /** Initialize database connection */
105 private void initializeJdbc() {
106 try {
107 // Load the JDBC driver
108 Class.forName("com.mysql.jdbc.Driver");
109 System.out.println("Driver loaded");
110
111 // Establish a connection
112 Connection conn = DriverManager.getConnection
113 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
114 System.out.println("Database connected");
115
116 // Create a Statement
117 pstmt = conn.prepareStatement("insert into Address " +
118 "(lastName, firstName, mi, telephone, email, street, city, "
119 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
120 }
121 catch (Exception ex) {
122 System.out.println(ex);
123 }
124 }
125
126 /** Store an address to the database */
127 private void storeStudent(Address address) throws SQLException {
128 pstmt.setString(1, address.getLastName());
129 pstmt.setString(2, address.getFirstName());
130 pstmt.setString(3, address.getMi());
131 pstmt.setString(4, address.getTelephone());
132 pstmt.setString(5, address.getEmail());
133 pstmt.setString(6, address.getStreet());
134 pstmt.setString(7, address.getCity());
135 pstmt.setString(8, address.getState());
136 pstmt.setString(9, address.getZip());
137 pstmt.executeUpdate();
138 }
139 }

M37_LIAN0182_11_SE_C37.indd 37 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-38 Chapter 37 Servlets

The statement (line 52)

HttpSession httpSession = request.getSession();

obtains a session, or creates a new session if the session does not exist.
Since objects can be stored in HttpSession, this program defines an Address class. An

Address object is created and is stored in the session using the setAttribute method, which
binds the object with a name like the one shown below (line 55):

httpSession.setAttribute("address", address);

To retrieve the object, use the following statement (line 90):

Address address = (Address)(httpSession.getAttribute("address"));

There is only one session between a client and a servlet. You can store any number of objects
in a session. By default, the maximum inactive interval on many Web servers including Tomcat
and GlassFish is 1800 seconds (i.e., a half-hour), meaning that the session expires if there is
no activity for 30 minutes. You can change the default using the setMaxInactive Interval
method. For example, to set the maximum inactive interval to one hour, use

httpSession.setMaxInactiveInterval(3600);

If you set a negative value, the session will never expire.
For this servlet program to work, you have to create the Address class in NetBeans, as

follows:

1. Choose New, Java Class from the context menu of the liangweb node in the project
pane to display the New Java Class dialog box.

2. Enter Address as the Class Name and chapter37 as the package name. Click Finish
to create the class.

3. Enter the code, as shown in Listing 37.12.

Listing 37.12 Address.java
 1 package chapter37;
 2
 3 public class Address {
 4 private String firstName;
 5 private String mi;
 6 private String lastName;
 7 private String telephone;
 8 private String street;
 9 private String city;
10 private String state;
11 private String email;
12 private String zip;
13
14 public String getFirstName() {
15 return this.firstName;
16 }
17
18 public void setFirstName(String firstName) {
19 this.firstName = firstName;
20 }
21
22 public String getMi() {
23 return this.mi;
24 }

M37_LIAN0182_11_SE_C37.indd 38 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37.8 Session Tracking 37-39

25
26 public void setMi(String mi) {
27 this.mi = mi;
28 }
29
30 public String getLastName() {
31 return this.lastName;
32 }
33
34 public void setLastName(String lastName) {
35 this.lastName = lastName;
36 }
37
38 public String getTelephone() {
39 return this.telephone;
40 }
41
42 public void setTelephone(String telephone) {
43 this.telephone = telephone;
44 }
45
46 public String getEmail() {
47 return this.email;
48 }
49
50 public void setEmail(String email) {
51 this.email = email;
52 }
53
54 public String getStreet() {
55 return this.street;
56 }
57
58 public void setStreet(String street) {
59 this.street = street;
60 }
61
62 public String getCity() {
63 return this.city;
64 }
65
66 public void setCity(String city) {
67 this.city = city;
68 }
69
70 public String getState() {
71 return this.state;
72 }
73
74 public void setState(String state) {
75 this.state = state;
76 }
77
78 public String getZip() {
79 return this.zip;
80 }
81
82 public void setZip(String zip) {
83 this.zip = zip;
84 }
85 }

M37_LIAN0182_11_SE_C37.indd 39 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-40 Chapter 37 Servlets

This support class will also be reused in the upcoming chapters.

 37.8.1 What is session tracking? What are three techniques for session tracking?

 37.8.2 How do you create a cookie, send a cookie to a browser, get cookies from a
browser, get the name of a cookie, set a new value in the cookie, and set cookie
expiration time?

 37.8.3 Do you have to create five Cookie objects in the servlet in order to send five
cookies to the browser?

 37.8.4 How do you get a session, set object value for the session, and get object value
from the session?

 37.8.5 Suppose you inserted the following code in line 53 in Listing 37.11:

httpSession.setMaxInactiveInterval(1);

What would happen after the user clicked the Confirm button from the browser?
Test your answer by running the program.

 37.8.6 Suppose you inserted the following code in line 53 in Listing 37.11:

httpSession.setMaxInactiveInterval(-1);

What would happen after the user clicked the Confirm button from the browser?

Point
Check

Key Terms

Common Gateway Interface 37-3
CGI programs 37-3
cookie 37-30
GET and POST methods 37-3
GlassFish 37-5
HTML form 37-15

URL query string 37-3
servlet 37-2
servlet container (servlet engine) 37-4
servelt life-cycle methods 37-10
Tomcat 37-5

ChapTer summary

1. A servlet is a special kind of program that runs from a Web server. Tomcat and GlassFish
are Web servers that can run servlets.

2. A servlet URL is specified by the host name, port, and request string (e.g., http://
localhost:8084/liangweb/ServletClass). There are several ways to invoke a servlet:
(1) by typing a servlet URL from a Web browser, (2) by placing a hyper link in an
HTML page, and (3) by embedding a servlet URL in an HTML form. All the requests
trigger the GET method, except that in the HTML form you can explicitly specify the
POST method.

3. You develop a servlet by defining a class that extends the HttpServlet class, imple-
ments the doGet(HttpServletRequest, HttpServletResponse) method to
respond to the GET method, and implements the doPost(HttpServletRequest,
HttpServletResponse) method to respond to the POST method.

M37_LIAN0182_11_SE_C37.indd 40 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 37-41

4. The request information passed from a client to the servlet is contained in an object
of HttpServletRequest. You can use the methods getParameter, getParam-
eterValues, getRemoteAddr, getRemoteHost, getHeader, getQueryString,
 getCookies, and getSession to obtain the information from the request.

5. The content sent back to the client is contained in an object of HttpServletResponse.
To send content to the client, first set the type of the content (e.g., html/plain) using
the setContentType(contentType) method, then output the content through
an I/O stream on the HttpServletResponse object. You can obtain a character
PrintWriter stream using the getWriter() method and obtain a binary Output-
Stream using the getOutputStream() method.

6. A servlet may be shared by many clients. When the servlet is first created, its init
method is called. It is not called again as long as the servlet is not destroyed. The ser-
vice method is invoked each time the server receives a request for the servlet. The server
spawns a new thread and invokes service. The destroy method is invoked after a
timeout period has passed or the Web server is stopped.

7. There are three ways to track a session. You can track a session by passing data from the
servlet to the client as a hidden value in a dynamically generated HTML form by includ-
ing a field such as <input type="hidden" name="lastName" value="Smith">.
The next request will submit the data back to the servlet. The servlet retrieves this hidden
value just like any other parameter value using the getParameter method.

8. You can track sessions using cookies. A cookie is created using the constructor new
Cookie(String name, String value). Cookies are sent from the server through
the object of HttpServletResponse using the addCookie(aCookie) method to tell
the browser to add a cookie with a given name and its associated value. If the browser
already has a cookie with the key name, the value will be updated. The browser will
then send the cookie with any request submitted to the same server. Cookies can have
expiration dates set, after which they will not be sent to the server.

9. Java servlet API provides a session-tracking tool that enables tracking of a large set
of data. A session can be obtained using the getSession() method through an
 HttpServletRequest object. The data can be stored as objects and are secure because
they are kept on the server side using the setAttribute(String name, Object
value) method.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

Section 37.5
 *37.1 (Factorial table) Write a servlet to display a table that contains factorials for the

numbers from 0 to 10, as shown in Figure 37.25.

M37_LIAN0182_11_SE_C37.indd 41 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-42 Chapter 37 Servlets

Figure 37.25 (a) The servlet displays factorials for the numbers from 0 to 10 in a table. (b) The servlet displays
the multiplication table.

(a) (b)

 *37.2 (Multiplication table) Write a servlet to display a multiplication table, as shown in
Figure 37.25b.

 *37.3 (Visit count) Develop a servlet that displays the number of visits on the servlet. Also
display the client’s host name and IP address, as shown in Figure 37.26.

Figure 37.26 The servlet displays the number of visits and the client’s host name, IP address, and
request URL.

Implement this program in three different ways:

1. Use an instance variable to store count. When the servlet is created for the
first time, count is 0. count is incremented every time the servlet’s doGet
method is invoked. When the Web server stops, count is lost.

2. Store the count in a file named Exercise39_3.dat, and use RandomAccess-
File to read the count in the servlet’s init method. The count is incremented
every time the servlet’s doGet method is invoked. When the Web server stops,
store the count back to the file.

3. Instead of counting total visits from all clients, count the visits by each client
identified by the client’s IP address. Use Map to store a pair of IP addresses and
visit counts. For the first visit, an entry is created in the map. For subsequent
visits, the visit count is updated.

Section 37.6
 *37.4 (Calculate tax) Write an HTML form to prompt the user to enter taxable income

and filing status, as shown in Figure 37.27a. Clicking the Compute Tax button
invokes a servlet to compute and display the tax, as shown in Figure 37.27b.
Use the computeTax method introduced in Listing 3.7, ComputingTax.java, to
compute tax.

M37_LIAN0182_11_SE_C37.indd 42 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 37-43

 *37.5 (Calculate loan) Write an HTML form that prompts the user to enter loan amount,
interest rate, and number of years, as shown in Figure 37.28a. Clicking the Compute
Loan Payment button invokes a servlet to compute and display the monthly and
total loan payments, as shown in Figure 37.28b. Use the Loan class given in
 Listing 10.2, Loan.java, to compute the monthly and total payments.

Figure 37.27 The servlet computes the tax.

(a) (b)

Figure 37.28 The servlet computes the loan payment.

(a) (b)

 **37.6 (Find scores from text files) Write a servlet that displays the student name and the
current score, given the SSN and class ID. For each class, a text file is used to store
the student name, SSN, and current score. The file is named after the class ID with
.txt extension. For instance, if the class ID were csci1301, the file name would be
csci1301.txt. Suppose each line consists of student name, SSN, and score. These
three items are separated by the # sign. Create an HTML form that enables the user
to enter the SSN and class ID, as shown in Figure 37.29a. Upon clicking the Submit
button, the result is displayed, as shown in Figure 37.29b. If the SSN or the class
ID does not match, report an error. Assume three courses are available: CSCI1301,
CSCI1302, and CSCI3720.

Figure 37.29 The HTML form accepts the SSN and class ID from the user and sends them to the servlet to
obtain the score.

(a) (b)

M37_LIAN0182_11_SE_C37.indd 43 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-44 Chapter 37 Servlets

Section 37.7
 **37.7 (Find scores from database tables) Rewrite the preceding servlet. Assume for each

class, a table is used to store the student name, ssn, and score. The table name is
the same as the class ID. For instance, if the class ID were csci1301, the table name
would be csci1301.

 *37.8 (Change the password) Write a servlet that enables the user to change the password
from an HTML form, as shown in Figure 37.30a. Suppose the user information is
stored in a database table named Account with three columns: username, password,
and name, where name is the real name of the user. The servlet performs the fol-
lowing tasks:

a. Verify that the username and old password are in the table. If not, report the
error and redisplay the HTML form.

b. Verify that the new password and the confirmed password are the same. If
not, report this error and redisplay the HTML form.

c. If the user information is entered correctly, update the password and report
the status of the update to the user, as shown in Figure 37.30b.

Figure 37.30 The user enters the username and the old password and sets a new password. The servlet reports
the status of the update to the user.

(a) (b)

 **37.9 (Display database tables) Write an HTML form that prompts the user to enter
or select a JDBC driver, database URL, username, password, and table name, as
shown in Figure 37.31a. Clicking the Submit button displays the table content, as
shown in Figure 37.31b.

Figure 37.31 The user enters database information and specifies a table to display its content.

(a) (b)

M37_LIAN0182_11_SE_C37.indd 44 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 37-45

Section 37.8
 *37.10 (Store cookies) Write a servlet that stores the following cookies in a browser, and

set their max age for two days.

Cookie 1: name is “color” and value is red.
Cookie 2: name is “radius” and value is 5.5.
Cookie 3: name is “count” and value is 2.

 *37.11 (Retrieve cookies) Write a servlet that displays all the cookies on the client. The
client types the URL of the servlet from the browser to display all the cookies stored
on the browser. (see Figure 37.32.)

Figure 37.32 All the cookies on the client are displayed in the browser.

Comprehensive
 ***37.12 (Syntax highlighting) Create an HTML form that prompts the user to enter a Java

program in a text area, as shown in Figure 37.33a. The form invokes a servlet that
displays the Java source code in a syntax-highlighted HTML format, as shown
in Figure 37.33b. The keywords, comments, and literals are displayed in bold
navy, green, and blue, respectively.

Figure 37.33 The Java code in plain text in (a) is displayed in HTML with syntax highlighted in (b).

(a) (b)

M37_LIAN0182_11_SE_C37.indd 45 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

37-46 Chapter 37 Servlets

 **37.13 (Access and update a Staff table) Write a Java servlet for Exercise 33.1, as shown
in Figure 37.34.

Figure 37.34 The webpage lets you view, insert, and update staff information.

 ***37.14 (Opinion poll) Create an HTML form that prompts the user to answer a question
such as “Are you a CS major?”, as shown in Figure 37.35a. When the Submit
button is clicked, the servlet increases the Yes or No count in a database and
displays the current Yes and No counts, as shown in Figure 37.35b.

Figure 37.35 The HTML form prompts the user to enter Yes or No for a question in (a), and the servlet updates
the Yes or No counts (b).

(a) (b)

Create a table named Poll, as follows:

create table Poll (
 question varchar(40) primary key,
 yesCount int,
 noCount int);

Insert one row into the table, as follows:

insert into Poll values ('Are you a CS major? ', 0, 0);

M37_LIAN0182_11_SE_C37.indd 46 5/29/17 10:00 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To create a simple JSP page (§38.2).

■■ To explain how a JSP page is processed (§38.3).

■■ To use JSP constructs to code JSP script (§38.4).

■■ To use predefined variables and directives in JSP (§§38.5–38.6).

■■ To use JavaBeans components in JSP (§38.7).

■■ To get and set JavaBeans properties in JSP (§38.8).

■■ To associate JavaBeans properties with input parameters (§38.9).

■■ To forward requests from one JSP page to another (§38.10).

■■ To develop an application for browsing database tables using JSP
(§38.11).

Javaserver Pages

CHAPTER

38

M38_LIAN0182_11_SE_C38.indd 1 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-2 Chapter 38 Javaserver Pages

38.1 Introduction
JavaServer Pages are the Java scripts and code embedded in an HTML file.

Servlets can be used to generate dynamic Web content. One drawback, however, is that you
have to embed HTML tags and text inside the Java source code. Using servlets, you have to
modify the Java source code and recompile it if changes are made to the HTML text. If you
have a lot of HTML script in a servlet, the program is difficult to read and maintain, since the
HTML text is part of the Java program. JavaServer Pages (JSP) was introduced to remedy this
drawback. JSP enables you to write regular HTML script in the normal way and embed Java
code to produce dynamic content.

38.2 Creating a Simple JSP Page
An IDE such an NetBeans is an effecitve tools for creating JavaServer Pages.

JSP provides an easy way to create dynamic webpages and simplify the task of building Web
applications. A JavaServer page is like a regular HTML page with special tags, known as JSP
tags, which enable the Web server to generate dynamic content. You can create a webpage
with HTML script and enclose the Java code for generating dynamic content in the JSP tags.
Here is an example of a simple JSP page:

<!-- CurrentTime.jsp -->
<html>
 <head>
 <title>
 CurrentTime
 </title>
 </head>
 <body>
 Current time is <%= new java.util.Date() %>
 </body>
</html>

The dynamic content is enclosed in the tag that begins with <%= and ends with %>. The current
time is returned as a string by invoking the toString method of an object of the java.util.
Date class.

An IDE like NetBeans can greatly simplify the task of developing JSP. To create JSP
in NetBeans, first you need to create a Web project. A Web project named liangweb
was created in the preceding chapter. For convenience, this chapter will create JSP in the
liangweb project.

Here are the steps to create and run CurrentTime.jsp:

1. Right-click the liangweb node in the project pane and choose New, JSP to display the
New JSP dialog box, as shown in Figure 38.1.

2. Enter CurrentTime in the JSP File Name field and click Finish. You will see Current-
Time.jsp appearing under the webpages node in liangweb.

3. Complete the code for CurrentTime.jsp, as shown in Figure 38.2.

4. Right-click CurrentTime.jsp in the project pane and choose Run File. You will see the
JSP page displayed in a Web browser, as shown in Figure 38.3.

Note
Like servlets, you can develop JSP in NetBeans, create a .war file, and then deploy the
.war file in a Java Web server such as Tomcat and GlassFish.

Point
Key

Point
Key

M38_LIAN0182_11_SE_C38.indd 2 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.2 Creating a Simple JSP Page 38-3

Figure 38.1 You can create a JSP page using NetBeans.

Figure 38.2 A template for a JSP page is created.

Figure 38.3 The result from a JSP page is displayed in a Web browser.

M38_LIAN0182_11_SE_C38.indd 3 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-4 Chapter 38 Javaserver Pages

38.3 How Is a JSP Page Processed?
JavaServer Pages are preprocessed and compiled into Java servlets by a Java Web server.

A JSP page must first be processed by a Web server before it can be displayed in a Web
browser. The Web server must support JSP, and the JSP page must be stored in a file with a
.jsp extension. The Web server translates the .jsp file into a Java servlet, compiles the servlet,
and executes it. The result of the execution is sent to the browser for display. Figure 38.4 shows
how a JSP page is processed by a Web server.

Note
A JSP page is translated into a servlet when the page is requested for the first time. It is
not retranslated if the page is not modified. To ensure that the first-time real user does
not encounter a delay, JSP developers should test the page after it is installed.

Point
Key

Figure 38.4 A JSP page is translated into a servlet.

Web Browser

HTML Page returned

Send a request URL
Web Server

Servlet
Engine

Web Server Host

Host Machine File System

Get Servlet

Get JSP
�le

Generate
Response

Generated
Servlet

Process
Servlet

JSP
Translator

URL Example
http://www.server.com:8080/servlet/JSPFile.jsp

/servlet/JSPFile.jsp

 38.2.1 What is the file-name extension of a JavaServer page? How is a JSP page
processed?

 38.2.2 Can you create a .war that contains JSP in NetBeans? Where should the .war be
placed in a Java application server?

 38.2.3 You can display an HTML file (e.g., c:\test.html) by typing the complete file name
in the Address field of Internet Explorer. Why can’t you display a JSP file by sim-
ply typing the file name?

38.4 JSP Scripting Constructs
There are three main types of JSP constructs: scripting constructs, directives, and
actions.

Scripting elements enable you to specify Java code that will become part of the resultant servlet.
Directives enable you to control the overall structure of the resultant servlet. Actions enable
you to control the behavior of the JSP engine. This section introduces scripting constructs.

Three types of JSP scripting constructs can be used to insert Java code into a resultant
servlet: expressions, scriptlets, and declarations.

A JSP expression is used to insert a Java expression directly into the output. It has the fol-
lowing form:

<%= Java expression %>

Point
Check

Point
Key

M38_LIAN0182_11_SE_C38.indd 4 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.4 JSP Scripting Constructs 38-5

The expression is evaluated, converted into a string, and sent to the output stream of the servlet.
A JSP scriptlet enables you to insert a Java statement into the servlet’s jspService

method, which is invoked by the service method. A JSP scriptlet has the following form:

<% Java statement %>

A JSP declaration is for declaring methods or fields into the servlet. It has the following form:

<%! Java declaration %>

HTML comments have the following form:

<!-- HTML Comment -->

If you don’t want the comment to appear in the resultant HTML file, use the following com-
ment in JSP:

<%-- JSP Comment --%>

Listing 38.1 creates a JavaServer page that displays factorials for numbers from 0 to 10, as
shown in Figure 38.5.

Figure 38.5 The JSP page displays factorials.

Listing 38.1 Factorial.jsp
 1 <html>
 2 <head>
 3 <title>
 4 Factorial
 5 </title>
 6 </head>
 7 <body>
 8
 9 <% for (int i = 0; i <= 10; i++) { %>
10 Factorial of <%= i %> is
11 <%= computeFactorial(i) %>

12 <% } %>
13
14 <%! private long computeFactorial(int n) {
15 if (n == 0)
16 return 1;
17 else
18 return n * computeFactorial(n − 1);

M38_LIAN0182_11_SE_C38.indd 5 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-6 Chapter 38 Javaserver Pages

19 }
20 %>
21
22 </body>
23 </html>

JSP scriptlets are enclosed between <% and %>. Thus,

for (int i = 0; i <= 10; i++) {, (line 9)

is a scriptlet and as such is inserted directly into the servlet’s jspService method.
JSP expressions are enclosed between <%= and %>. Thus,

<%= i %>, (line 10)

is an expression and is inserted into the output stream of the servlet.
JSP declarations are enclosed between <%! and %>. Thus,

<%! private long computeFactorial(int n) {
 ...
 }
 %>

is a declaration that defines methods or fields in the servlet.
What will be different if line 9 is replaced by the two alternatives shown below? Both work

fine, but there is an important difference. In (a), i is a local variable in the servlet, whereas in
(b), i is an instance variable when translated to the servlet.

<% int i = 0; %>
<% for (; i <= 10; i++) { %>

(a)

<%! int i; %>
<% for (i = 0; i <= 10; i++) { %>

(b)

Caution:
For JSP, the loop body, even though it contains a single statement, must be placed inside
braces. It would be wrong to delete the opening brace ({) in line 9 and the closing brace
(<% } %>) in line 12.

Caution:
There is no semicolon at the end of a JSP expression. For example, <%= i; %> is incor-
rect. But there must be a semicolon for each Java statement in a JSP scriptlet. For example,
<% int i = 0 %> is incorrect.

Caution:
JSP and Java elements are case sensitive, but HTML is not.

 38.4.1 What are a JSP expression, a JSP scriptlet, and a JSP declaration? How do you
write these constructs in JSP?

 38.4.2 Find three syntax errors in the following JSP code:

<%! int k %>
<% for (int j = 1; j <= 9; j++) %>
 <%= j; %>

 38.4.3 In the following JSP, which variables are instance variables, and which are local
variables when it is translated into in the servlet?

<%! int k; %>
<%! int i; %>

Point
Check

M38_LIAN0182_11_SE_C38.indd 6 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.5 Predefined Variables 38-7

<% for (int j = 1; j <= 9; j++) k += 1;%>
<%= k>
 <%= i>
 <%= getTime()>

<% private long getTime() {
 long time = System.currentTimeMillis();
 return time;
 } %>

38.5 Predefined Variables
JSP provides predefined variables that can be conviniently used in the JSP code.

You can use variables in JSP. For convenience, JSP provides eight predefined variables from
the servlet environment that can be used with JSP expressions and scriptlets. These variables
are also known as JSP implicit objects.

■■ request represents the client’s request, which is an instance of HttpServlet-
Request. You can use it to access request parameters and HTTP headers, such as
cookies and host name.

■■ response represents the servlet’s response, which is an instance of HttpServlet-
Response. You can use it to set response type and send output to the client.

■■ out represents the character output stream, which is an instance of PrintWriter
obtained from response.getWriter(). You can use it to send character content
to the client.

■■ session represents the HttpSession object associated with the request, obtained
from request.getSession().

■■ application represents the ServletContext object for storing persistent data for
all clients. The difference between session and application is that session is tied
to one client, but application is for all clients to share persistent data.

■■ config represents the ServletConfig object for the page.

■■ pageContext represents the PageContext object. PageContext is a new class
introduced in JSP to give a central point of access to many page attributes.

■■ page is an alternative to this.

As an example, let us write an HTML page that prompts the user to enter loan amount, annual
interest rate, and number of years, as shown in Figure 38.6a. Clicking the Compute Loan
 Payment button invokes a JSP to compute and display the monthly and total loan payments,
as shown in Figure 38.6b.

The HTML file is named ComputeLoan.html (Listing 38.2). The JSP file is named
 ComputeLoan.jsp (Listing 38.3).

Point
Key

Figure 38.6 The JSP computes the loan payments.

(a) (b)

M38_LIAN0182_11_SE_C38.indd 7 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-8 Chapter 38 Javaserver Pages

Listing 38.2 ComputeLoan.html
 1 <!-- ComputeLoan.html -->
 2 <html>
 3 <head>
 4 <title>ComputeLoan</title>
 5 </head>
 6 <body>
 7 <form method = "get" action = "ComputeLoan.jsp">
 8 Compute Loan Payment

 9 Loan Amount
10 <input type = "text" name = "loanAmount" />

11 Annual Interest Rate
12 <input type = "text" name = "annualInterestRate" />

13 Number of Years
14 <input type = "text" name = "numberOfYears" size = "3" />

15 <p><input type = "submit" name = "Submit"
16 value = "Compute Loan Payment" />
17 <input type = "reset" value = "Reset" /></p>
18 </form>
19 </body>
20 </html>

Listing 38.3 ComputeLoan.jsp
 1 <!-- ComputeLoan.jsp -->
 2 <html>
 3 <head>
 4 <title>ComputeLoan</title>
 5 </head>
 6 <body>
 7 <% double loanAmount = Double.parseDouble(
 8 request.getParameter("loanAmount"));
 9 double annualInterestRate = Double.parseDouble(
10 request.getParameter("annualInterestRate"));
11 double numberOfYears = Integer.parseInt(
12 request.getParameter("numberOfYears"));
13 double monthlyInterestRate = annualInterestRate / 1200;
14 double monthlyPayment = loanAmount * monthlyInterestRate /
15 (1 − 1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12));
16 double totalPayment = monthlyPayment * numberOfYears * 12; %>
17 Loan Amount: <%= loanAmount %>

18 Annual Interest Rate: <%= annualInterestRate %>

19 Number of Years: <%= numberOfYears %>

20 Monthly Payment: <%= monthlyPayment %>

21 Total Payment: <%= totalPayment %>

22 </body>
23 </html>

ComputeLoan.html is displayed first to prompt the user to enter the loan amount, annual
interest rate, and number of years. Since this file does not contain any JSP elements, it is named
with an .html extension as a regular HTML file.

ComputeLoan.jsp is invoked upon clicking the Compute Loan Payment button in
the HTML form. The JSP page obtains the parameter values using the predefined variable
request in lines 7–12 and computes monthly payment and total payment in lines 13–16. The
formula for computing monthly payment is given in Listing 2.9, ComputeLoan.java.

What is wrong if the JSP scriptlet <% in line 7 is replaced by the JSP declaration <%!?
The predefined variables (e.g., request, response, and out) correspond to local variables

M38_LIAN0182_11_SE_C38.indd 8 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.6 JSP Directives 38-9

defined in the servlet methods doGet and doPost. They must appear in JSP scriptlets, not in
JSP declarations.

Tip
ComputeLoan.jsp can also be invoked using the following query string: http://
localhost:8084/liangweb/ComputeLoan.jsp?loanAmount=10000&annu
alInterestRate=6&numberOfYears=15.

 38.5.1 Describe the predefined variables in JSP.

 38.5.2 What is wrong if the JSP scriptlet <% in line 7 in ComputeLoan.jsp (Listing 38.3)
is replaced by JSP declaration <%!?

 38.5.3 Can you use predefined variables (e.g., request, response, and out) in JSP
declarations?

38.6 JSP Directives
You can use JSP directives to instruct JSP engine on how to process the JSP code.

A JSP directive is a statement that gives the JSP engine information about the JSP page. For
example, if your JSP page uses a Java class from a package other than the java.lang pack-
age, you have to use a directive to import this package. The general syntax for a JSP directive
is shown below:

<%@ directive attribute = "value" %>, or
<%@ directive attribute1 = "value1"
 attribute2 = "value2"
 ...
 attributen = "valuen" %>

The possible directives are:

■■ page lets you provide information for the page, such as importing classes and setting
up content type. The page directive can appear anywhere in the JSP file.

■■ include lets you insert a file into the servlet when the page is translated to a servlet.
The include directive must be placed where you want the file to be inserted.

■■ taglib lets you define custom tags.

The following are useful attributes for the page directive:

■■ import specifies one or more packages to be imported for this page. For example,
the directive <%@ page import="java.util.*, java.text.*" %> imports
java.util.* and java.text.*.

■■ contentType specifies the content type for the resultant JSP page. By default, the
content type is text/html for JSP. The default content type for servlets is text/
plain.

■■ session specifies a boolean value to indicate whether the page is part of the
 session. By default, session is true.

■■ buffer specifies the output stream buffer size. By default, it is 8KB. For example,
the directive <%@ page buffer="10KB" %> specifies that the output buffer size
is 10KB. The directive <%@ page buffer="none" %> specifies that a buffer is
not used.

Point
Check

Point
Key

M38_LIAN0182_11_SE_C38.indd 9 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-10 Chapter 38 Javaserver Pages

■■ autoFlush specifies a boolean value to indicate whether the output buffer should
be automatically flushed when it is full or whether an exception should be raised
when the buffer overflows. By default, this attribute is true. In this case, the buffer
attribute cannot be none.

■■ isThreadSafe specifies a boolean value to indicate whether the page can be
accessed simultaneously without data corruption. By default, it is true. If it is set to
false, the JSP page will be translated to a servlet that implements the SingleTh-
readModel interface.

■■ errorPage specifies a JSP page that is processed when an exception occurs in the
current page. For example, the directive <%@ page errorPage="HandleError.
jsp" %> specifies that HandleError.jsp is processed when an exception occurs.

■■ isErrorPage specifies a boolean value to indicate whether the page can be used
as an error page. By default, this attribute is false.

Listing 38.4 gives an example that shows how to use the page directive to import a class. The
example uses the Loan class created in Listing 10.2, Loan.java, to simplify Listing 38.3,
 ComputeLoan.jsp. You can create an object of the Loan class and use its monthly Payment()
and totalPayment() methods to compute the monthly payment and total payment.

Listing 38.4 ComputeLoan1.jsp
 1 <!-- ComputeLoan1.jsp -->
 2 <html>
 3 <head>
 4 <title>ComputeLoan Using the Loan Class</title>
 5 </head>
 6 <body>
 7 <%@ page import = "chapter38.Loan" %>
 8 <% double loanAmount = Double.parseDouble(
 9 request.getParameter("loanAmount"));
10 double annualInterestRate = Double.parseDouble(
11 request.getParameter("annualInterestRate"));
12 int numberOfYears = Integer.parseInt(
13 request.getParameter("numberOfYears"));
14 Loan loan =
15 new Loan(annualInterestRate, numberOfYears, loanAmount);
16 %>
17 Loan Amount: <%= loanAmount %>

18 Annual Interest Rate: <%= annualInterestRate %>

19 Number of Years: <%= numberOfYears %>

20 Monthly Payment: <%= loan.getMonthlyPayment() %>

21 Total Payment: <%= loan.getTotalPayment() %>

22 </body>
23 </html>

This JSP uses the Loan class. You need to create the class in the liangweb project in package
chapter38 as follows:

package chapter38;
public class Loan {
 // Same as lines 2–71 in Listing 10.2, Loan.java, so omitted

The directive <%@ page import ="chapter38.Loan" %> imports the Loan class in line 7.
Line 14 creates an object of Loan for the given loan amount, annual interest rate, and number
of years. Lines 20–21 invoke the Loan object's monthlyPayment() and total Payment()
methods to display monthly payment and total payment.

M38_LIAN0182_11_SE_C38.indd 10 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.7 Using JavaBeans in JSP 38-11

 38.6.1 Describe the JSP directives and attributes for the page directive.

 38.6.2 If a class does not have a package statement, can you import it?

 38.6.3 If you use a custom class from a JSP, where should the class be placed?

38.7 Using JavaBeans in JSP
You can use JavaBeans to create objects for sharing among different JSP pages.

Normally you create an instance of a class in a program and use it in that program. This method
is for sharing the class, not the object. JSP allows you to share the object of a class among
different pages. To enable an object to be shared, its class must be a JavaBeans component.
Recall that this entails the following three features:

■■ The class is public.

■■ The class has a public constructor with no arguments.

■■ The class is serializable. (This requirement is not necessary in JSP.)

To create an instance for a JavaBeans component, use the following syntax:

<jsp:useBean id = "objectName" scope = "scopeAttribute"
class = "ClassName" />

This syntax is roughly equivalent to

<% ClassName objectName = new ClassName() %>

except that the scope attribute is missing. The scope attribute specifies the scope of the object,
and the object is not recreated if it is already within the scope. Listed below are four possible
values for the scope attribute:

■■ application specifies that the object is bound to the application. The object can be
shared by all sessions of the application.

■■ session specifies that the object is bound to the client’s session. Recall that a client’s
session is automatically created between a Web browser and a Web server. When
a client from the same browser accesses two servlets or two JSP pages on the same
server, the session is the same.

■■ page is the default scope, which specifies that the object is bound to the page.

■■ request specifies that the object is bound to the client’s request.

When <jsp:useBean id="objectName" scope="scopeAttribute" class="ClassName"
/> is processed, the JSP engine first searches for an object of the class with the same id and scope.
If found, the preexisting bean is used; otherwise, a new bean is created.

Here is another syntax for creating a bean:

<jsp:useBean id = "objectName" scope = "scopeAttribute"
 class = "ClassName" >
 statements
</jsp:useBean>

The statements are executed when the bean is created. If a bean with the same ID and class
name already exists in the scope, the statements are not executed.

Listing 38.5 creates a JavaBeans component named Count and uses it to count the number
of visits to a JSP page, as shown in Figure 38.7.

Point
Check

Point
Key

M38_LIAN0182_11_SE_C38.indd 11 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-12 Chapter 38 Javaserver Pages

Listing 38.5 Count.java
 1 package chapter38;
 2
 3 public class Count {
 4 private int count = 0;
 5
 6 /** Return count property */
 7 public int getCount() {
 8 return count;
 9 }
10
11 /** Increase count */
12 public void increaseCount() {
13 count++;
14 }
15 }

The JSP page named TestBeanScope.jsp is created in Listing 38.6.

Listing 38.6 TestBeanScope.jsp
 1 <-- TestBeanScope.jsp -->
 2 <%@ page import = "chapter38.Count" %>
 3 <jsp:useBean id = "count" scope = "application"
 4 class = "chapter38.Count">
 5 </jsp:useBean>
 6 <html>
 7 <head>
 8 <title>TestBeanScope</title>
 9 </head>
10 <body>
11 <h3>Testing Bean Scope in JSP (Application)</h3>
12 <% count.increaseCount(); %>
13 You are visitor number <%= count.getCount() %>

14 From host: <%= request.getRemoteHost() %>
15 and session: <%= session.getId() %>
16 </body>
17 </html>

The scope attribute specifies the scope of the bean. scope="application" (line 3) specifies
that the bean is alive in the JSP engine and available for all clients to access. The bean can be
shared by any client with the directive <jsp:useBean id="count" scope="application"
class="Count"> (lines 3–4). Every client accessing TestBeanScope.jsp causes the count
to increase by 1. The first client causes count object to be created, and subsequent access to
TestBeanScope uses the same object.

If scope="application" is changed to scope="session", the scope of the bean is
 limited to the session from the same browser. The count will increase only if the page is
requested from the same browser. If scope="application" is changed to scope="page",

Figure 38.7 The number of visits to the page is increased when the page is visited.

M38_LIAN0182_11_SE_C38.indd 12 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.7 Using JavaBeans in JSP 38-13

the scope of the bean is limited to the page, and any other page cannot access this bean. The page
will always display count 1. If scope="application" is changed to scope="request",
the scope of the bean is limited to the client’s request, and any other request on the page will
always display count 1.

If the page is destroyed, the count restarts from 0. You can fix the problem by storing the
count in a random access file or in a database table. Assume you store the count in the Count
table in a database. The Count class can be modified in Listing 38.7.

Listing 38.7 Count.java (Revised Version)
 1 package chapter38;
 2
 3 import java.sql.*;
 4
 5 public class Count {
 6 private int count = 0;
 7 private Statement statement = null;
 8
 9 public Count() {
10 initializeJdbc();
11 }
12
13 /** Return count property */
14 public int getCount() {
15 try {
16 ResultSet rset = statement.executeQuery
17 ("select countValue from Count");
18 rset.next();
19 count = rset.getInt(1);
20 }
21 catch (Exception ex) {
22 ex.printStackTrace();
23 }
24
25 return count;
26 }
27
28 /** Increase count */
29 public void increaseCount() {
30 count++;
31 try {
32 statement.executeUpdate(
33 "update Count set countValue = " + count);
34 }
35 catch (Exception ex) {
36 ex.printStackTrace();
37 }
38 }
39
40 /** Initialize database connection */
41 public void initializeJdbc() {
42 try {
43 Class.forName("com.mysql.jdbc.Driver");
44
45 // Connect to the sample database
46 Connection connection = DriverManager.getConnection
47 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
48
49 statement = connection.createStatement();
50 }

M38_LIAN0182_11_SE_C38.indd 13 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-14 Chapter 38 Javaserver Pages

 38.7.1 You can create an object in a JSP scriptlet. What is the difference between
an object created using the new operator and a bean created using the
<jsp:useBean ... > tag?

 38.7.2 What is the scope attribute for? Describe four scope attributes.

 38.7.3 Describe how a <jsp:useBean ... > statement is processed by the JSP engine.

38.8 Getting and Setting Properties
JSP provides convenient syntax for getting and setting JavaBeans properties.

By convention, a JavaBeans component provides the get and set methods for reading and modi-
fying its private properties. You can get the property in JSP using the syntax shown below:

<jsp:getProperty name = "beanId" property = "sample" />

This is roughly equivalent to

<%= beanId.getSample() %>

You can set the property in JSP using the following syntax:

<jsp:setProperty name = "beanId"
 property = "sample" value = "test1" />

This is equivalent to

<% beanId.setSample("test1"); %>

38.9 Associating Properties with Input Parameters
Often properties are associated with input parameters. Suppose you want to get the value of
the input parameter named score and set it to the JavaBeans property named score. You
could write the following code:

<% double score = Double.parseDouble(
 request.getParameter("score")); %>
<jsp:setProperty name = "beanId" property = "score"
 value = "<%= score %>" />

This is cumbersome. JSP provides a convenient syntax that can be used to simplify it:

<jsp:setProperty name = "beanId" property = "score"
 param = "score" />

Instead of using the value attribute, you use the param attribute to name an input parameter.
The value of this parameter is set to the property.

Note
Simple type conversion is performed automatically when a bean property is associated
with an input parameter. A string input parameter is converted to an appropriate primitive

Point
Check

Point
Key

51 catch (Exception ex) {
52 ex.printStackTrace();
53 }
54 }
55 }

M38_LIAN0182_11_SE_C38.indd 14 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.9 Associating Properties with Input Parameters 38-15

data type or a wrapper class for a primitive type. For example, if the bean property is of
the int type, the value of the parameter will be converted to the int type. If the bean
property is of the Integer type, the value of the parameter will be converted to the
Integer type.

Often the bean property and the parameter have the same name. You can use the following
convenient statement to associate all the bean properties in beanId with the parameters that
match the property names:

<jsp:setProperty name = "beanId" property = "*" />

38.9.1 Example: Computing Loan Payments Using JavaBeans
This example uses JavaBeans to simplify Listing 38.4, ComputeLoan1.jsp, by associat-
ing the bean properties with the input parameters. The new ComputeLoan2.jsp is given in
 Listing 38.8.

Listing 38.8 ComputeLoan2.jsp
 1 <!-- ComputeLoan2.jsp -->
 2 <html>
 3 <head>
 4 <title>ComputeLoan Using the Loan Class</title>
 5 </head>
 6 <body>
 7 <%@ page import = "chapter38.Loan" %>
 8 <jsp:useBean id = "loan" class = "chapter38.Loan"
 9 scope = "page" ></jsp:useBean>
10 <jsp:setProperty name = "loan" property = "*" />
11 Loan Amount: <%= loan.getLoanAmount() %>

12 Annual Interest Rate: <%= loan.getAnnualInterestRate() %>

13 Number of Years: <%= loan.getNumberOfYears() %>

14 Monthly Payment: <%= loan.monthlyPayment() %>

15 Total Payment: <%= loan.totalPayment() %>

16 </body>
17 </html>

Lines 8–9

<jsp:useBean id = "loan" class = "chapter38.Loan"
 scope = "page" ></jsp:useBean>

create a bean named loan for the Loan class. Line 10

<jsp:setProperty name = "loan" property = "*" />

associates the bean properties loanAmount, annualInteresteRate, and numberOfYears
with the input parameter values and performs type conversion automatically.

Lines 11–13 use the accessor methods of the loan bean to get the loan amount, annual inter-
est rate, and number of years.

This program acts the same as in Listings 38.3 and 38.4, ComputeLoan.jsp and
 ComputeLoan1.jsp, but the coding is much, more simplified.

38.9.2 Example: Computing Factorials Using JavaBeans
This example creates a JavaBeans component named FactorialBean and uses it to com-
pute the factorial of an input number in a JSP page named FactorialBean.jsp, as shown in
Figure 38.8.

M38_LIAN0182_11_SE_C38.indd 15 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-16 Chapter 38 Javaserver Pages

Create a JavaBeans component named FactorialBean.java (Listing 38.9). Create
 FactorialBean.jsp (Listing 38.10).

Figure 38.8 The factorial of an input integer is computed using a method in
FactorialBean.

Listing 38.9 FactorialBean.java
 1 package chapter38;
 2
 3 public class FactorialBean {
 4 private int number;
 5
 6 /** Return number property */
 7 public int getNumber() {
 8 return number;
 9 }
10
11 /** Set number property */
12 public void setNumber(int newValue) {
13 number = newValue;
14 }
15
16 /** Obtain factorial */
17 public long getFactorial() {
18 long factorial = 1;
19 for (int i = 1; i <= number; i++)
20 factorial *= i;
21 return factorial;
22 }
23 }

Listing 38.10 FactorialBean.jsp
 1 <!-- FactorialBean.jsp -->
 2 <%@ page import = "chapter38.FactorialBean" %>
 3 <jsp:useBean id = "factorialBeanId"
 4 class = "chapter38.FactorialBean" scope = "page" >
 5 </jsp:useBean>
 6 <jsp:setProperty name = "factorialBeanId" property = "*" />
 7 <html>
 8 <head>
 9 <title>
10 FactorialBean
11 </title>
12 </head>
13 <body>
14 <h3>Compute Factorial Using a Bean</h3>

M38_LIAN0182_11_SE_C38.indd 16 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.9 Associating Properties with Input Parameters 38-17

The jsp:useBean tag (lines 3–4) creates a bean factorialBeanId of the FactorialBean
class. Line 5 <jsp:setProperty name="factorialBeanId" property="*" />
associates all the bean properties with the input parameters that have the same name. In this
case, the bean property number is associated with the input parameter number. When you
click the Compute Factorial button, JSP automatically converts the input value for number
from string into int and sets it to factorialBean before other statements are executed.

Lines 21–22 <jsp:getProperty name="factorialBeanId" property="number"
/> tag (line 21) is equivalent to <%= factorialBeanId.getNumber() %>. The method
factorialBeanId.getFactorial() (line 25) returns the factorial for the number in
factorialBeanId.

Design Guide
Mixing a lot of Java code with HTML in a JSP page makes the code difficult to read and
to maintain. You should move the Java code to a .java file as much as you can.

Following the preceding design guide, you may improve the preceding example by moving
the Java code in lines 23–25 to the FactorialBean class. The new FactorialBean.java
and FactorialBean.jsp are given in Listings 38.11 and 38.12.

15 <form method = "post">
16 Enter new value: <input name = "number" />

17 <input type = "submit" name = "Submit"
18 value = "Compute Factorial" />
19 <input type = "reset" value = "Reset" />

20 Factorial of
21 <jsp:getProperty name = "factorialBeanId"
22 property = "number" /> is
23 <%@ page import = "java.text.*" %>
24 <% NumberFormat format = NumberFormat.getNumberInstance(); %>
25 <%= format.format(factorialBeanId.getFactorial()) %>
26 </form>
27 </body>
28 </html>

Listing 38.11 NewFactorialBean.java
 1 package chapter38;
 2
 3 import java.text.*;
 4
 5 public class NewFactorialBean {
 6 private int number;
 7
 8 /** Return number property */
 9 public int getNumber() {
10 return number;
11 }
12
13 /** Set number property */
14 public void setNumber(int newValue) {
15 number = newValue;
16 }
17
18 /** Obtain factorial */
19 public long getFactorial() {
20 long factorial = 1;

M38_LIAN0182_11_SE_C38.indd 17 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-18 Chapter 38 Javaserver Pages

There is a problem in this page. The program cannot display large factorials. For example, if
you entered value 21, the program would display an incorrect factorial. To fix this problem,
all you need to do is to revise the NewFactorialBean class using BigInteger to computing
factorials (see Exercise 38.18).

38.9.3 Example: Displaying International Time
Listing 37.5, TimeForm.java, gives a Java servlet that uses the doGet method to generate
an HTML form for the user to specify a locale and time zone (see Figure 37.18a) and uses
the doPost method to display the current time for the specified time zone in the specified
locale (see Figure 37.18b). This section rewrites the servlet using JSP. You have to create two
JSP pages, one for displaying the form, and the other for displaying the current time.

In the TimeForm.java servlet, arrays allLocale and allTimeZone are the data fields.
The doGet and doPost methods both use the arrays. Since the available locales and time
zones are used in both pages, it is better to create an object that contains all available locales
and time zones. This object can be shared by both pages.

21 for (int i = 1; i <= number; i++)
22 factorial *= i;
23 return factorial;
24 }
25
26 /** Format number */
27 public static String format(long number) {
28 NumberFormat format = NumberFormat.getNumberInstance();
29 return format.format(number);
30 }
31 }

Listing 38.12 NewFactorialBean.jsp
 1 <!-- NewFactorialBean.jsp -->
 2 <%@ page import = "chapter38.NewFactorialBean" %>
 3 <jsp:useBean id = "factorialBeanId"
 4 class = "chapter38.NewFactorialBean" scope = "page" >
 5 </jsp:useBean>
 6 <jsp:setProperty name = "factorialBeanId" property = "*" />
 7 <html>
 8 <head>
 9 <title>
10 FactorialBean
11 </title>
12 </head>
13 <body>
14 <h3>Compute Factorial Using a Bean</h3>
15 <form method = "post">
16 Enter new value: <input name = "number" />

17 <input type = "submit" name = "Submit"
18 value = "Compute Factorial" />
19 <input type = "reset" value = "Reset" />

20 Factorial of
21 <jsp:getProperty name = "factorialBeanId"
22 property = "number" /> is
23 <%= NewFactorialBean.format(factorialBeanId.getFactorial()) %>
24 </form>
25 </body>
26 </html>

M38_LIAN0182_11_SE_C38.indd 18 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.9 Associating Properties with Input Parameters 38-19

Let us create a JavaBeans component named TimeBean.java (Listing 38.13). This class
obtains all the available locales in an array in line 7 and all time zones in an array in line 8.
The bean properties localeIndex and timeZoneIndex (lines 9–10) are defined to refer to
an element in the arrays. The currentTimeString() method (lines 42–52) returns a string
for the current time with the specified locale and time zone.

Listing 38.13 TimeBean.java
 1 package chapter38;
 2
 3 import java.util.*;
 4 import java.text.*;
 5
 6 public class TimeBean {
 7 private Locale[] allLocale = Locale.getAvailableLocales();
 8 private String[] allTimeZone = TimeZone.getAvailableIDs();
 9 private int localeIndex;
10 private int timeZoneIndex;
11
12 public TimeBean() {
13 Arrays.sort(allTimeZone);
14 }
15
16 public Locale[] getAllLocale() {
17 return allLocale;
18 }
19
20 public String[] getAllTimeZone() {
21 return allTimeZone;
22 }
23
24 public int getLocaleIndex() {
25 return localeIndex;
26 }
27
28 public int getTimeZoneIndex() {
29 return timeZoneIndex;
30 }
31
32 public void setLocaleIndex(int index) {
33 localeIndex = index;
34 }
35
36 public void setTimeZoneIndex(int index) {
37 timeZoneIndex = index;
38 }
39
40 /** Return a string for the current time
41 * with the specified locale and time zone */
42 public String currentTimeString(
43 int localeIndex, int timeZoneIndex) {
44 Calendar calendar =
45 new GregorianCalendar(allLocale[localeIndex]);
46 TimeZone timeZone =
47 TimeZone.getTimeZone(allTimeZone[timeZoneIndex]);
48 DateFormat dateFormat = DateFormat.getDateTimeInstance(
49 DateFormat.FULL, DateFormat.FULL, allLocale[localeIndex]);
50 dateFormat.setTimeZone(timeZone);
51 return dateFormat.format(calendar.getTime());
52 }
53 }

M38_LIAN0182_11_SE_C38.indd 19 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-20 Chapter 38 Javaserver Pages

Create DisplayTimeForm.jsp (Listing 38.14). This page displays a form just like the one shown
in Figure 37.18a. Line 2 imports the TimeBean class. A bean is created in lines 3–5 and is
used in lines 17, 19, 24, and 26 to return all locales and time zones. The scope of the bean is
application (line 4), so the bean can be shared by all sessions of the application.

Listing 38.14 DisplayTimeForm.jsp
 1 <!-- DisplayTimeForm.jsp -->
 2 <%@ pageimport = "chapter38.TimeBean" %>
 3 <jsp:useBean id = "timeBeanId"
 4 class = "chapter38.TimeBean" scope = "application" >
 5 </jsp:useBean>
 6
 7 <html>
 8 <head>
 9 <title>
10 Display Time Form
11 </title>
12 </head>
13 <body>
14 <h3>Choose locale and time zone</h3>
15 <form method = "post" action = "DisplayTime.jsp">
16 Locale <select size = "1" name = "localeIndex">
17 <% for (int i = 0; i < timeBeanId.getAllLocale().length; i++) {%>
18 <option value = "<%= i %>">
19 <%= timeBeanId.getAllLocale()[i] %>
20 </option>
21 <%}%>
22 </select>

23 Time Zone <select size = "1" name = "timeZoneIndex">
24 <% for (int i = 0; i < timeBeanId.getAllTimeZone().length; i++) {%>
25 <option value = "<%= i %>">
26 <%= timeBeanId.getAllTimeZone()[i] %>
27 </option>
28 <%}%>
29 </select>

30 <input type = "submit" name = "Submit"
31 value = "Get Time" />
32 <input type = "reset" value = "Reset" />
33 </form>
34 </body>
35 </html>

Create DisplayTime.jsp (Listing 38.15). This page is invoked from DisplayTimeForm.jsp
to display the time with the specified locale and time zone, just as in Figure 37.18b.

Listing 38.15 DisplayTime.jsp
 1 <!-- DisplayTime.jsp -->
 2 <%@page pageEncoding = "GB18030"%>
 3 <%@ page import = "chapter38.TimeBean" %>
 4 <jsp:useBean id = "timeBeanId"
 5 class = "chapter38.TimeBean" scope = "application" >
 6 </jsp:useBean>
 7 <jsp:setProperty name = "timeBeanId" property = "*" />
 8
 9 <html>
10 <head>

M38_LIAN0182_11_SE_C38.indd 20 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.9 Associating Properties with Input Parameters 38-21

Line 2 sets the character encoding for the page to GB18030 for displaying international
 characters. By default, it is UTF-8.

Line 5 imports chapter38.TimeBean and creates a bean using the same id as in the
 preceding page. Since the object is already created in the preceding page, the timeBeanId in
this page (lines 4–6) and in the preceding page point to the same object.

38.9.4 Example: Registering Students
Listing 37.11, RegistrationWithHttpSession.java, gives a Java servlet that obtains student
information from an HTML form (see Figure 37.21) and displays the information for user
confirmation (see Figure 37.22). Once the user confirms it, the servlet stores the data into the
database. This section rewrites the servlet using JSP. You will create two JSP pages, one named
GetRegistrationData.jsp for displaying the data for user confirmation and the other named
StoreData.jsp for storing the data into the database.

Since every session needs to connect to the same database, you should declare a class
for connecting to the database and for storing a student to the database. This class named
StoreData is given in Listing 38.16. The initializeJdbc method (lines 15–31) connects
to the database and creates a prepared statement for storing a record to the Address table.
The storeStudent method (lines 34–45) executes the prepared statement to store a student
address. The Address class is created in Listing 37.12.

11 <title>
12 Display Time
13 </title>
14 </head>
15 <body>
16 <h3>Choose locale and time zone</h3>
17 Current time is
18 <%= timeBeanId.currentTimeString(timeBeanId.getLocaleIndex(),
19 timeBeanId.getTimeZoneIndex()) %>
20 </body>
21 <html>

Listing 38.16 StoreData.java
 1 package chapter38;
 2
 3 import java.sql.*;
 4 import chapter37.Address;
 5
 6 public class StoreData {
 7 // Use a prepared statement to store a student into the database
 8 private PreparedStatement pstmt;
 9
10 public StoreData() {
11 initializeJdbc();
12 }
13
14 /** Initialize database connection */
15 private void initializeJdbc() {
16 try {
17 Class.forName("com.mysql.jdbc.Driver");
18
19 // Connect to the sample database
20 Connection connection = DriverManager.getConnection
21 ("jdbc:mysql://localhost/javabook" , "scott", "tiger");
22

M38_LIAN0182_11_SE_C38.indd 21 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-22 Chapter 38 Javaserver Pages

The HTML file that displays the form is identical to Registration.html in Listing 37.8
except that the action is replaced by HGetRegistrationData.jsp.

GetRegistrationData.jsp, which obtains the data from the form, is shown in
 Listing 38.17. A bean is created in lines 3–4. Line 5 obtains the property values from the
form. This is a shorthand notation. Note the parameter names and the property names must be
the same to use this notation.

23 // Create a Statement
24 pstmt = connection.prepareStatement("insert into Address " +
25 "(lastName, firstName, mi, telephone, email, street, city, "
26 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
27 }
28 catch (Exception ex) {
29 System.out.println(ex);
30 }
31 }
32
33 /** Store a student record to the database */
34 public void storeStudent(Address address) throws SQLException {
35 pstmt.setString(1, address.getLastName());
36 pstmt.setString(2, address.getFirstName());
37 pstmt.setString(3, address.getMi());
38 pstmt.setString(4, address.getTelephone());
39 pstmt.setString(5, address.getEmail());
40 pstmt.setString(6, address.getStreet());
41 pstmt.setString(7, address.getCity());
42 pstmt.setString(8, address.getState());
43 pstmt.setString(9, address.getZip());
44 pstmt.executeUpdate();
45 }
46 }

Listing 38.17 GetRegistrationData.jsp
 1 <!-- GetRegistrationData.jsp -->
 2 <%@ page import = "chapter37.Address" %>
 3 <jsp:useBean id = "addressId"
 4 class = "chapter37.Address" scope = "session"></jsp:useBean>
 5 <jsp:setProperty name = "addressId" property = "*" />
 6
 7 <html>
 8 <body>
 9 <h1>Registration Using JSP</h1>
10
11 <%
12 if (addressId.getLastName() == null ||
13 addressId.getFirstName() == null) {
14 out.println("Last Name and First Name are required");
15 return; // End the method
16 }
17 %>
18
19 <p>You entered the following data</p>
20 <p>Last name: <%= addressId.getLastName() %></p>
21 <p>First name: <%= addressId.getFirstName() %></p>
22 <p>MI: <%= addressId.getMi() %></p>
23 <p>Telephone: <%= addressId.getTelephone() %></p>

M38_LIAN0182_11_SE_C38.indd 22 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.9 Associating Properties with Input Parameters 38-23

Note
The scope for addressId is session, but the scope for storeDataId is application.
Why? GetRegistrationData.jsp obtains student information, and StoreData.jsp stores the
information in the same session. So the session scope is appropriate for addressId.
All the sessions access the same database and use the same prepared statement to store
data. With the application scope for storeDataId, the bean for StoreData needs
to be created just once.

Note
The storeStudent method in line 11 may throw a java.sql.SQLException.
In JSP, you can omit the try-block for checked exceptions. In case of an exception, JSP
displays an error page.

24 <p>Email: <%= addressId.getEmail() %></p>
25 <p>Address: <%= addressId.getStreet() %></p>
26 <p>City: <%= addressId.getCity() %></p>
27 <p>State: <%= addressId.getState() %></p>
28 <p>Zip: <%= addressId.getZip() %></p>
29
30 <!-- Set the action for processing the answers -->
31 <form method = "post" action = "StoreStudent.jsp">
32 <input type = "submit" value = "Confirm">
33 </form>
34 </body>
35 </html>

GetRegistrationData.jsp invokes StoreStudent.jsp (line 31) when the user clicks
the Confirm button. In Listing 38.18, the same addressId is shared with the preceding page
within the scope of the same session in lines 3–4. A bean for StoreData is created in lines
5–6 with the scope of application.

Listing 38.18 StoreStudent.jsp
 1 <!-- StoreStudent.jsp -->
 2 <%@ page import = "chapter37.Address" %>
 3 <jsp:useBean id = "addressId" class = "chapter37.Address"
 4 scope = "session"></jsp:useBean>
 5 <jsp:useBean id = "storeDataId" class = "chapter38.StoreData"
 6 scope = "application"></jsp:useBean>
 7
 8 <html>
 9 <body>
10 <%
11 storeDataId.storeStudent(addressId);
12
13 out.println(addressId.getFirstName() + " " +
14 addressId.getLastName() +
15 " is now registered in the database");
16 out.close(); // Close stream
17 %>
18 </body>
19 </html>

M38_LIAN0182_11_SE_C38.indd 23 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-24 Chapter 38 Javaserver Pages

Tip
Using beans is an effective way to develop JSP. You should put Java code into a bean as
much as you can. The bean not only simplifies JSP programming but also makes code
reusable. The bean can also be used to implement persistent sessions.

38.10 Forwarding Requests from JavaServer Pages
You can use the JSP forward tag to jump to navigate to another HTML page.

Web applications developed using JSP generally consist of many pages linked together. JSP
provides a forwarding tag in the following syntax that can be used to forward a page to another
page:

<jsp:forward page = "destination" />

 38.10.1 How do you associate bean properties with input parameters?

 38.10.2 How do you write a statement to forward requests to another JSP page?

38.11 Case Study: Browsing Database Tables
This section presents a very useful JSP application for browsing tables. When you start the
application, the first page prompts the user to enter the JDBC driver, URL, username, and
password for a database, as shown in Figure 38.9. After you log in to the database, you can
select a table to browse, as shown in Figure 38.10. Clicking the Browse Table Content button
displays the table content, as shown in Figure 38.11.

Point
Key

Point
Check

Figure 38.9 To access a database, you need to provide the JDBC driver, URL, username,
and password.

Figure 38.10 You can select a table to browse from this page.

M38_LIAN0182_11_SE_C38.indd 24 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.11 Case Study: Browsing Database Tables 38-25

Create a JavaBeans component named DBBean.java (see Listing 38.19).

Figure 38.11 The contents of the selected table are displayed.

Listing 38.19 DBBean.java
 1 package chapter38;
 2
 3 import java.sql.*;
 4
 5 public class DBBean {
 6 private Connection connection = null;
 7 private String username;
 8 private String password;
 9 private String driver;
10 private String url;
11
12 /** Initialize database connection */
13 public void initializeJdbc() {
14 try {
15 System.out.println("Driver is " + driver);
16 Class.forName(driver);
17
18 // Connect to the sample database
19 connection = DriverManager.getConnection(url, username,
20 password);
21 }
22 catch (Exception ex) {
23 ex.printStackTrace();
24 }
25 }
26
27 /** Get tables in the database */
28 public String[] getTables() {
29 String[] tables = null;
30
31 try {
32 DatabaseMetaData dbMetaData = connection.getMetaData();
33 ResultSet rsTables = dbMetaData.getTables(null, null, null,
34 new String[] {"TABLE"});
35
36 int size = 0;

M38_LIAN0182_11_SE_C38.indd 25 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-26 Chapter 38 Javaserver Pages

37 while (rsTables.next()) size++;
38
39 rsTables = dbMetaData.getTables(null, null, null,
40 new String[] {"TABLE"});
41
42 tables = new String[size];
43 int i = 0;
44 while (rsTables.next())
45 tables[i++] = rsTables.getString("TABLE_NAME");
46 }
47 catch (Exception ex) {
48 ex.printStackTrace();
49 }
50
51 return tables;
52 }
53
54 /** Return connection property */
55 public Connection getConnection() {
56 return connection;
57 }
58
59 public void setUsername(String newUsername) {
60 username = newUsername;
61 }
62
63 public String getUsername() {
64 return username;
65 }
66
67 public void setPassword(String newPassword) {
68 password = newPassword;
69 }
70
71 public String getPassword() {
72 return password;
73 }
74
75 public void setDriver(String newDriver) {
76 driver = newDriver;
77 }
78
79 public String getDriver() {
80 return driver;
81 }
82
83 public void setUrl(String newUrl) {
84 url = newUrl;
85 }
86
87 public String getUrl() {
88 return url;
89 }
90 }

Create an HTML file named DBLogin.html (see Listing 38.20) that prompts the user to
enter database information and three JSP files named DBLoginInitialization.jsp (see
 Listing 38.21), Table.jsp (see Listing 38.22), and BrowseTable.jsp (see Listing 38.23)
to process and obtain database information.

M38_LIAN0182_11_SE_C38.indd 26 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.11 Case Study: Browsing Database Tables 38-27

Listing 38.21 DBLoginInitialization.jsp
 1 <!-- DBLoginInitialization.jsp -->
 2 <%@ page import = "chapter38.DBBean" %>
 3 <jsp:useBean id = "dBBeanId" scope = "session"
 4 class = "chapter38.DBBean">
 5 </jsp:useBean>
 6 <jsp:setProperty name = "dBBeanId" property = "*" />
 7 <html>
 8 <head>
 9 <title>DBLoginInitialization</title>
10 </head>
11 <body>
12
13 <%-- Connect to the database --%>
14 <% dBBeanId.initializeJdbc(); %>
15
16 <% if (dBBeanId.getConnection() == null) { %>
17 Error: Login failed. Try again.
18 <% }
19 else {%>
20 <jsp:forward page = "Table.jsp" />
21 <% } %>
22 </body>
23 </html>

Listing 38.20 DBLogin.html
 1 <!-- DBLogin.html -->
 2 <html>
 3 <head>
 4 <title>
 5 DBLogin
 6 </title>
 7 </head>
 8 <body>
 9 <form method = "post" action = "DBLoginInitialization.jsp">
10 JDBC URL
11 <select name = "url" size = "1">
12 <option>jdbc:odbc:ExampleMDBDataSource</option>
13 <option>jdbc:mysql://localhost/javabook</option>
14 <option>jdbc:oracle:thin:@liang.armstrong.edu:1521:orcl</option>
15 </select>

16 Username <input name = "username" />

17 Password <input name = "password" />

18 <input type = "submit" name = "Submit" value = "Login" />
19 <input type = "reset" value = "Reset" />
20 </form>
21 </body>
22 </html>

Listing 38.22 Table.jsp
 1 <!-- Table.jsp -->
 2 <%@ page import = "chapter38.DBBean" %>
 3 <jsp:useBean id = "dBBeanId" scope = "session"
 4 class = "chapter38.DBBean">
 5 </jsp:useBean>
 6 <html>
 7 <head>

M38_LIAN0182_11_SE_C38.indd 27 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-28 Chapter 38 Javaserver Pages

 8 <title>Table</title>
 9 </head>
10 <body>
11 <% String[] tables = dBBeanId.getTables();
12 if (tables == null) { %>
13 No tables
14 <% }
15 else { %>
16 <form method = "post" action = "BrowseTable.jsp">
17 Select a table
18 <select name = "tablename" size = "1">
19 <% for (int i = 0; i < tables.length; i++) { %>
20 <option><%= tables[i] %></option>
21 <% }
22 } %>
23 </select>

24 <input type = "submit" name = "Submit"
25 value = "Browse Table Content">
26 <input type = "reset" value = "Reset">
27 </form>
28 </body>
29 </html>

Listing 38.23 BrowseTable.jsp
 1 <!-- BrowseTable.jsp -->
 2 <%@ page import = "chapter38.DBBean" %>
 3 <jsp:useBean id = "dBBeanId" scope = "session"
 4 class = "chapter38.DBBean" >
 5 </jsp:useBean>
 6 <%@ page import = "java.sql.*" %>
 7 <html>
 8 <head>
 9 <title>BrowseTable</title>
10 </head>
11 <body>
12
13 <% String tableName = request.getParameter("tablename");
14
15 ResultSet rsColumns = dBBeanId.getConnection().getMetaData().
16 getColumns(null, null, tableName, null);
17 %>
18 <table border = "1">
19 <tr>
20 <% // Add column names to the table
21 while (rsColumns.next()) { %>
22 <td><%= rsColumns.getString("COLUMN_NAME") %></td>
23 <%}%>
24 </tr>
25
26 <% Statement statement =
27 dBBeanId.getConnection().createStatement();
28 ResultSet rs = statement.executeQuery(
29 "select * from " + tableName);
30
31 // Get column count
32 int columnCount = rs.getMetaData().getColumnCount();
33
34 // Store rows to rowData
35 while (rs.next()) {

M38_LIAN0182_11_SE_C38.indd 28 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38.11 Case Study: Browsing Database Tables 38-29

36 out.println("<tr>");
37 for (int i = 0; i < columnCount; i++) { %>
38 <td><%= rs.getObject(i + 1) %></td>
39 <% }
40 out.println("</tr>");
41 } %>
42 </table>
43 </body>
44 </html>

You start the application from DBLogin.html. This page prompts the user to enter a JDBC
driver, URL, username, and password to log in to a database. A list of accessible drivers and
URLs is provided in the selection list. You must make sure that these database drivers are
added into the Libraries node in the project.

When you click the Login button, DBLoginInitialization.jsp is invoked. When this page is
processed for the first time, an instance of DBBean named dBBeanId is created. The input
parameters driver, url, username, and password are passed to the bean properties. The
initializeJdbc method loads the driver and establishes a connection to the database. If login
fails, the connection property is null. In this case, an error message is displayed. If login suc-
ceeds, control is forwarded to Table.jsp.

Table.jsp shares dBBeanId with DBLoginInitialization.jsp in the same session, so it can
access connection through dBBeanId and obtain tables in the database using the database
metadata. The table names are displayed in a selection box in a form. When the user selects a
table name and clicks the Browse Table Content button, BrowseTable.jsp is processed.

BrowseTable.jsp shares dBBeanId with Table.jsp and DBLoginInitialization.jsp in the
same session. It retrieves the table contents for the selected table from Table.jsp.

JSP Scripting Constructs Syntax

■■ <%= Java expression %> The expression is evaluated and inserted into the page.

■■ <% Java statement %> Java statements inserted in the jspService method.

■■ <%! Java declaration %> Defines data fields and methods.

■■ <%-- JSP comment %> The JSP comments do not appear in the resultant HTML file.

■■ <%@ directive attribute="value" %> The JSP directives give the JSP engine
information about the JSP page. For example, <%@ page import="java.util.*,
java.text.*" %> imports java.util.* and java.text.*.

■■ <jsp:useBean id="objectName" scope="scopeAttribute"
class="ClassName" /> Creates a bean if new. If a bean is already created, asso-
ciates the id with the bean in the same scope.

■■ <jsp:useBean id="objectName" scope="scopeAttribute"
class="ClassName" > statements </jsp:useBean> The statements are
executed when the bean is created. If a bean with the same id and class name already
exists, the statements are not executed.

■■ <jsp:getProperty name="beanId" property="sample" /> Gets the property
value from the bean, which is the same as <%= beanId.getSample() %>.

■■ <jsp:setProperty name="beanId" property="sample" value="test1" />
Sets the property value for the bean, which is the same as <% beanId.
setSample("test1"); %>.

■■ <jsp:setProperty name="beanId" property="score" param="score" />
Sets the property with an input parameter.

M38_LIAN0182_11_SE_C38.indd 29 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-30 Chapter 38 Javaserver Pages

■■ <jsp:setProperty name="beanId" property="*" /> Associates and sets all
the bean properties in beanId with the input parameters that match the property names.

■■ <jsp:forward page="destination" /> Forwards this page to a new page.

JSP Predefined Variables

■■ application represents the ServletContext object for storing persistent data
for all clients.

■■ config represents the ServletConfig object for the page.

■■ out represents the character output stream, which is an instance of PrintWriter,
obtained from response.getWriter().

■■ page is alternative to this.

■■ request represents the client's request, which is an instance of HttpServlet-
Request in the servlet's service method.

■■ response represents the client's response, which is an instance of HttpServlet-
Response in the servlet's service method.

■■ session represents the HttpSession object associated with the request, obtained
from request.getSession().

Chapter Summary

1. A JavaServer page is like a regular HTML page with special tags, known as JSP tags,
which enable the Web server to generate dynamic content. You can create a webpage
with static HTML and enclose the code for generating dynamic content in the JSP tags.

2. A JSP page must be stored in a file with a .jsp extension. The Web server translates the
.jsp file into a Java servlet, compiles the servlet, and executes it. The result of the execu-
tion is sent to the browser for display.

3. A JSP page is translated into a servlet when the page is requested for the first time. It is
not retranslated if the page is not modified. To ensure that the first-time real user does
not encounter a delay, JSP developers should test the page after it is installed.

4. There are three main types of JSP constructs: scripting constructs, directives, and actions.
Scripting elements enable you to specify Java code that will become part of the result-
ant servlet. Directives enable you to control the overall structure of the resultant servlet.
Actions enable you to control the behaviors of the JSP engine.

5. Three types of scripting constructs can be used to insert Java code into the resultant
servlet: expressions, scriptlets, and declarations.

6. The scope attribute (application, session, page, and request) specifies the scope of a Java-
Beans object. Application specifies that the object be bound to the application. Session
specifies that the object be bound to the client’s session. Page is the default scope, which
specifies that the object be bound to the page. Request specifies that the object be bound
to the client’s request.

7. Web applications developed using JSP generally consist of many pages linked together.
JSP provides a forwarding tag in the following syntax that can be used to forward a page
to another page: <jsp:forward page="destination" />.

M38_LIAN0182_11_SE_C38.indd 30 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 38-31

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCiSeS

Note
Solutions to even-numbered exercises in this chapter are in exercise\jspexercise
from evennumberedexercise.zip, which can be downloaded from the Companion Website.

Section 38.4
 38.1 (Factorial table in JSP) Rewrite Exercise 37.1 using JSP.

 38.2 (Muliplication table in JSP) Rewrite Exercise 37.2 using JSP.

Section 38.5
 *38.3 (Obtain parameters in JSP) Rewrite the servlet in Listing 37.4, GetParameters.java,

using JSP. Create an HTML form that is identical to Student_Registration_Form.
html in Listing 37.3 except that the action is replaced by Exercise40_3.jsp for
obtaining parameter values.

Section 38.6
 38.4 (Calculate tax in JSP) Rewrite Exercise 37.4 using JSP. You need to import

 ComputeTax in the JSP.

 *38.5 (Find scores from text files) Rewrite Exercise 37.6 using servlets.

 **38.6 (Find scores from database tables) Rewrite Exercise 37.7 using servlets.

Section 38.7
 **38.7 (Change the password) Rewrite Exercise 37.8 using servlets.

Comprehensive
 *38.8 (Store cookies in JSP) Rewrite Exercise 37.10 using JSP. Use response.

addCookie(Cookie) to add a cookie.

 *38.9 (Retrieve cookies in JSP) Rewrite Exercise 37.11 using JSP. Use Cookie[]
 cookies = request.getCookies() to get all cookies.

 38.10 (Draw images) Write a JSP program that displays a country's flag and description
as shown in Figure 38.12. The country code such as us is passed as a parameter in
the URL. The country's flag file is named as CountryCode.gif and the description
is stored in a text file named CountryCode.txt on the server. So, for the country
code us, the flag file us.gif and the text file is us.txt.

 ***38.11 (Syntax highlighting) Rewrite Exercise 37.12 using JSP.

 **38.12 (Opinion poll) Rewrite Exercise 37.13 using JSP.

 ***38.13 (Multiple-question opinion poll) The Poll table in Exercise 37.13 contains only
one question. Suppose you have a Poll table that contains multiple questions.
Write a JSP that reads all the questions from the table and display them in a form,
as shown in Figure 38.13a. When the user clicks the Submit button, another JSP
page is invoked. This page updates the Yes or No counts for each question and
displays the current Yes and No counts for each question in the Poll table, as
shown in Figure 38.13b. Note that the table may contain many questions. The
questions in the figure are just examples. Sort the questions in alphabetical order.

M38_LIAN0182_11_SE_C38.indd 31 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-32 Chapter 38 Javaserver Pages

Figure 38.13 The form prompts the user to enter Yes or No for each question in (a), and
the updated Yes or No counts are displayed in (b).

Figure 38.12 The program displays an image and the description of the image.

 **38.14 (Addition quiz) Write a JSP program that generates addition quizzes randomly, as
shown in Figure 38.14a. After the user answers all questions, the JSP displays the
result, as shown in Figure 38.14b.

Figure 38.14 The program displays addition questions in (a) and answers in (b).

 **38.15 (Subtraction quiz) Write a JSP program that generates subtraction quizzes randomly,
as shown in Figure 38.14a. The first number must always be greater than or equal
to the second number. After the user answers all questions, the JSP displays the
result, as shown in Figure 38.14b.

M38_LIAN0182_11_SE_C38.indd 32 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 38-33

Figure 38.14 The program displays subtraction questions in (a) and answers in (b).

 **38.16 (Guess birthday) Listing 3.3, GuessBirthDay.java, gives a program for guessing
a birthday. Write a JSP program that displays five sets of numbers, as shown in
Figure 38.15a. After the user checks the appropriate boxes and clicks the Find Date
button, the program displays the date, as shown in Figure 38.15b.

Figure 38.15 (a) The program displays five sets of numbers for the user to check the
boxes. (b) The program displays the date.

 **38.17 (Guess capitals) Write a JSP that prompts the user to enter a capital for a state, as
shown in Figure 38.16a. Upon receiving the user input, the program reports whether
the answer is correct, as shown in Figure 38.16b. You can click the Next button to
display another question. You can use a two-dimensional array to store the states
and capitals, as proposed in Exercise 9.22. Create a list from the array and apply the
shuffle method to reorder the list so the questions will appear in random order.

Figure 38.16 (a) The program displays a question. (b) The program displays the answer to
the question.

 *38.18 (Large factorial) Rewrite Listing 38.11 to handle a large factorial. Use the
 BigInteger class introduced in §14.12.

M38_LIAN0182_11_SE_C38.indd 33 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

38-34 Chapter 38 Javaserver Pages

Figure 38.17 The JSP page lets you view, insert, and update staff information.

 **38.19 (Access and update a Staff table) Write a JSP for Exercise 33.1, as shown in
Figure 38.17.

 *38.20 (Guess number) Write a JSP page that generates a random number between 1 and
1000 and let the user enter a guess. When the user enters a guess, the program
should tell the user whether the guess is correct, too high, or too low.

M38_LIAN0182_11_SE_C38.indd 34 5/29/17 9:50 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To explain what JSF is (§39.1).

■■ To create a JSF project in NetBeans (§39.2.1).

■■ To create a JSF page (§39.2.2).

■■ To create a JSF managed bean (§39.2.3).

■■ To use JSF expressions in a facelet (§39.2.4).

■■ To use JSF GUI components (§39.3).

■■ To obtain and process input from a form (§39.4).

■■ To develop a calculator using JSF (§39.5).

■■ To track sessions in application, session, view, and request scopes
(§39.6).

■■ To validate input using the JSF validators (§39.7).

■■ To bind database with facelets (§39.8).

■■ To open a new JSF page from the current page (§39.9).

■■ To program using contexts and dependency injection (§39.10).

JavaServer Faces

CHAPTER

39

M39_LIAN0182_11_SE_C39.indd 1 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-2 Chapter 39 JavaServer Faces

39.1 Introduction
JavaServer Faces (JSF) is a new technology for developing server-side Web
 applications using Java.

JSF enables you to completely separate Java code from HTML. You can quickly build Web
applications by assembling reusable UI components in a page, connecting these components
to Java programs and wiring client-generated events to server-side event handlers. The applica-
tion developed using JSF is easy to debug and maintain.

Note
This chapter introduces JSF 2, the latest standard for JavaServer Faces. You need to know
XHTML (eXtensible HyperText Markup Language) and CSS (Cascading Style Sheet) to
start this chapter. For information on XHTML and CSS, see Supplements V.A and V.B.

Caution
The examples and exercises in this chapter were tested using NetBeans 7.3.1, GlassFish 4,
and Java EE 7. You need to use NetBeans 7.3.1 or a higher version with GlassFish 4 and
Java EE 7 to develop your JSF projects.

39.2 Getting Started with JSF
NetBeans is an effective tool for developing JSF applications.

We begin with a simple example that illustrates the basics of developing JSF projects using
NetBeans. The example is to display the date and time on the server, as shown in Figure 39.1.

JSF

JSF 2
XHTML
CSS

NetBeans 7.3.1
GlassFish 4
Java EE 7

Point
Key

Figure 39.1 The application displays the date and time on the server.

Point
Key

39.2.1 Creating a JSF Project
Here are the steps to create the application.

Step 1: Choose File, New Project to display the New Project dialog box. In this box,
choose Java Web in the Categories pane and Web Application in the Projects pane. Click
Next to display the New Web Application dialog box.

In the New Web Application dialog box, enter and select the following fields, as shown
in Figure 39.2a:

Project Name: jsf2demo
Project Location: c:\book

Step 2: Click Next to display the dialog box for choosing servers and settings. Select the
following fields as shown in Figure 39.2b. (Note: You can use any server such as Glass-
Fish 4.x that supports Java EE 6.)

Server: GlassFish 4
Java EE Version: Java EE 7 Web

create a project

choose server and Java EE 7

M39_LIAN0182_11_SE_C39.indd 2 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.2 Getting Started with JSF 39-3

Step 3: Click Next to display the dialog box for choosing frameworks, as shown in
Figure 39.3. Check JavaServer Faces and JSF 2.0 as Server Library. Click Finish to create
the project, as shown in Figure 39.4.

choose JavaServer Faces and
JSF2.2

Figure 39.2 The New Web Application dialog box enables you to create a new Web project.

(a) (b)

Figure 39.3 Check JavaServer Faces and JSF 2.2 to create a Web project.

39.2.2 A Basic JSF Page
A new project was just created with a default page named index.xhtml, as shown in Figure 39.4.
This page is known as a facelet, which mixes JSF tags with XHTML tags. Listing 39.1 lists
the contents of index.xhtml.

Listing 39.1 index.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!-- index.xhtml -->
 3 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 4 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 5 <html xmlns="http://www.w3.org/1999/xhtml"
 6 xmlns:h="http://xmlns.jcp.org/jsf/html">

facelet

xml version
comment
DOCTYPE

default namespace
JSF namespace

M39_LIAN0182_11_SE_C39.indd 3 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-4 Chapter 39 JavaServer Faces

 7 <h:head>
 8 <title>Facelet Title</title>
 9 </h:head>
10 <h:body>
11 Hello from Facelets
12 </h:body>
13 </html>

Line 1 is an XML declaration to state that the document conforms to the XML version 1.0 and
uses the UTF-8 encoding. The declaration is optional, but it is a good practice to use it. A docu-
ment without the declaration may be assumed of a different version, which may lead to errors.
If an XML declaration is present, it must be the first item to appear in the document. This is
because an XML processor looks for the first line to obtain information about the document
so that it can be processed correctly.

Line 2 is a comment for documenting the contents in the file. XML comment always begins
with <!-- and ends with -->.

Lines 3 and 4 specify the version of XHTML used in the document. This can be used by
the Web browser to validate the syntax of the document.

An XML document consists of elements described by tags. An element is enclosed between a
start tag and an end tag. XML elements are organized in a tree-like hierarchy. Elements may con-
tain subelements, but there is only one root element in an XML document. All the elements must
be enclosed inside the root tag. The root element in XHTML is defined using the html tag (line 5).

Each tag in XML must be used in a pair of the start tag and the end tag. A start tag begins
with < followed by the tag name and ends with >. An end tag is the same as its start tag except
that it begins with </. The start tag and end tag for html are <html> and </html>.

The html element is the root element that contains all other elements in an XHTML page.
The starting <html> tag (lines 5 and 6) may contain one or more xmlns (XML namespace)
attributes to specify the namespace for the elements used in the document. Namespaces are like
Java packages. Java packages are used to organize classes and to avoid naming conflict. XHTML
namespaces are used to organize tags and resolve naming conflict. If an element with the same
name is defined in two namespaces, the fully qualified tag names can be used to differentiate them.

h:head

h:body

XML declaration

XML comment

DOCTYPE

element

tag

html tag

Figure 39.4 A default JSF page is created in a new Web project.

M39_LIAN0182_11_SE_C39.indd 4 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.2 Getting Started with JSF 39-5

Each xmlns attribute has a name and a value separated by an equal sign (=). The following
declaration (line 5)

xmlns="http://www.w3.org/1999/xhtml"

specifies that any unqualified tag names are defined in the default standard XHTML namespace.
The following declaration (line 6)

xmlns:h="http://xmlns.jcp.org/jsf/html"

allows the tags defined in the JSF tag library to be used in the document. These tags must have
a prefix h.

An html element contains a head and a body. The h:head element (lines 7–9) defines an
HTML title element. The title is usually displayed in the browser window’s title bar.

An h:body element defines the page’s content. In this simple example, it contains a string
to be displayed in the Web browser.

Note
The XML tag names are case sensitive, whereas HTML tags are not. So, <html> is differ-
ent from <HTML> in XML. Every start tag in XML must have a matching end tag, whereas
some tags in HTML do not need end tags.

You can now display the page in index.xhtml by right-clicking on index.xhtml in the projects
pane and choose Run File. The page is displayed in a browser, as shown in Figure 39.5.

xmlns

h:head

h:body

Figure 39.5 The index.xhtml is displayed in the browser.

Note
The JSF page is processed and converted into a regular HTML page for displaying by a
browser. The Java software that runs on the server side for producing the HTML page is
known as Java server container or simply container. The container is responsible for
handling all server-side tasks for Java EE. GlassFish is a Java server container.

39.2.3 Managed JavaBeans for JSF
JSF applications are developed using the Model-View-Controller (MVC) architecture, which
separates the application’s data (contained in the model) from the graphical presentation (the
view). The controller is the JSF framework that is responsible for coordinating interactions
between view and the model.

In JSF, the facelets are the view for presenting data. Data are obtained from Java objects.
Objects are defined using Java classes. In JSF, the objects that are accessed from a facelet are
JavaBeans objects. A JavaBean class is simply a public Java class with a no-arg constructor.
JavaBeans may contain properties. By convention, a property is defined with a getter and a
setter method. If a property only has a getter method, the property is called a read-only prop-
erty. If a property only has a setter method, the property is called a write-only property. A
property does not need to be defined as a data field in the class.

container

JavaBean

M39_LIAN0182_11_SE_C39.indd 5 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-6 Chapter 39 JavaServer Faces

Our example in this section is to develop a JSF facelet to display current time. We will cre-
ate a JavaBean with a getTime() method that returns the current time as a string. The facelet
will invoke this method to obtain current time.

Here are the steps to create a JavaBean named TimeBean.

Step 1. Right-click the project node jsf2demo to display a context menu as shown in
Figure 39.6. Choose New, JSF Managed Bean to display the New JSF Managed Bean
dialog box, as shown in Figure 39.7. (Note: if you don’t see JSF Managed Bean in the
menu, choose Other to locate it in the JavaServer Faces category.)

Step 2. Enter and select the following fields, as shown in Figure 39.7:

Class Name: TimeBean
Package: jsf2demo
Name: timeBean
Scope: request
Click Finish to create TimeBean.java, as shown in Figure 39.8.

Step 3. Add the getTime() method to return the current time, as shown in Listing 39.2.

Figure 39.6 Choose JSF Managed Bean to create a JavaBean for JSF.

M39_LIAN0182_11_SE_C39.indd 6 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.2 Getting Started with JSF 39-7

Figure 39.7 Specify the name, location, and scope for the bean.

Figure 39.8 A JavaBean for JSF was created.

M39_LIAN0182_11_SE_C39.indd 7 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-8 Chapter 39 JavaServer Faces

Listing 39.2 TimeBean.java
 1 package jsf2demo;
 2
 3 import javax.inject.Named;
 4 import javax.enterprise.context.RequestScoped;
 5
 6 @Named (value = "timeBean")
 7 @RequestScoped
 8 public class TimeBean {
 9 public TimeBean() {
10 }
11
12 public String getTime() {
13 return new java.util.Date().toString();
14 }
15 }

TimeBean is a JavaBeans with the @Named annotation, which indicates that the JSF framework
will create and manage the TimeBean objects used in the application. You have learned to use
the @Override annotation in Chapter 11. The @Override annotation tells the compiler that
the annotated method is required to override a method in a superclass. The @Named annotation
tells the compiler to generate the code to enable the bean to be used by JSF facelets.

The @RequestScope annotation specifies that the scope of the JavaBeans object is within a
request. You can also use @ViewScope, @SessionScope or @ApplicationScope to specify
the scope for a session or for the entire application.

39.2.4 JSF Expressions
We demonstrate JSF expressions by writing a simple application that displays the current time.
You can display current time by invoking the getTime() method in a TimeBean object using
a JSF expression.

To keep index.xhtml intact, we create a new JSF page named CurrentTime.xhtml as follows:

Step 1. Right-click the jsf2demo node in the project pane to display a context menu and
choose New, JSF Page to display the New JSF File dialog box, as shown in Figure 39.9.

Step 2. Enter CurrentTime in the File Name field, choose Facelets and click Finish to
generate CurrentTime.xhtml, as shown in Figure 39.10.

Step 3. Add a JSF expression to obtain the current time, as shown in Listing 39.3.

Step 4. Right-click on CurrentTime.xhtml in the project to display a context menu and
choose Run File to display the page in a browser as shown in Figure 39.1.

Listing 39.3 CurrentTime.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Display Current Time</title>
 8 <meta http-equiv="refresh" content ="60" />
 9 </h:head>
10 <h:body>
11 The current time is #{timeBean.time}
12 </h:body>
13 </html>

@Named
@RequestScoped

time property

@RequestScope

refresh page

JSF expression

M39_LIAN0182_11_SE_C39.indd 8 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.2 Getting Started with JSF 39-9

Figure 39.9 The New JSF Page dialog is used to create a JSF page.

Figure 39.10 A New JSF page CurrentTime was created.

Line 11 defines a meta tag inside the h:head tag to tell the browser to refresh every 60 seconds.
This line can also be written as

<meta http-equiv="refresh" content ="60"></ meta>

An element is called an empty element if there are no contents between the start tag and the
end tag. In an empty element, data are typically specified as attributes in the start tag. You can
close an empty element by placing a slash immediately preceding the start tag’s right angle
bracket, as shown in line 8, for brevity.

empty element

M39_LIAN0182_11_SE_C39.indd 9 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-10 Chapter 39 JavaServer Faces

Line 8 uses a JSF expression #{timeBean.time} to obtain the current time. timeBean is
an object of the TimeBean class. The object name can be changed in the @Named annotation
(line 6 in Listing 39.2) using the following syntax:

@Named(name = "anyObjectName")

By default, the object name is the class name with the first letter in lowercase.
Note that time is a JavaBeans property because the getTime() method is defined in Time-

Beans. The JSF expression can either use the property name or invoke the method to obtain
the current time. So the following two expressions are fine:

#{timeBean.time}
#{timeBean.getTime()}

The syntax of a JSF expression is

#{expression}

JSF expressions bind JavaBeans objects with facelets. You will see more use of JSF expres-
sions in the upcoming examples in this chapter.

 39.2.1 What is JSF?

 39.2.2 How do you create a JSF project in NetBeans?

 39.2.3 How do you create a JSF page in a JSF project?

 39.2.4 What is a facelet?

 39.2.5 What is the file extension name for a facelet?

 39.2.6 What is a managed bean?

 39.2.7 What is the @Named annotation for?

 39.2.8 What is the @RequestScope annotation for?

39.3 JSF GUI Components
JSF provides many elements for displaying GUI components.

Table 39.1 lists some of the commonly used elements. The tags with the h prefix are in the JSF
HTML Tag library. The tags with the f prefix are in the JSF Core Tag library.

Listing 39.4 is an example that uses some of these elements to display a student registration
form, as shown in Figure 39.11.

Listing 39.4 StudentRegistrationForm.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Student Registration Form</title>
 9 </h:head>
10 <h:body>
11 <h:form>
12 <!-- Use h:graphicImage -->
13 <h3>Student Registration Form
14 <h:graphicImage name="usIcon.gif" library="image"/>
15 </h3>

Point
Check

Point
Key

jsf core namespace

graphicImage

M39_LIAN0182_11_SE_C39.indd 10 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.3 JSF GUI Components 39-11

JSF Tag Description

h:form inserts an XHTML form into a page.

h:panelGroup similar to a JavaFX FlowPane.

h:panelGrid similar to a JavaFX GridPane.

h:inputText displays a textbox for entering input.

h:outputText displays a textbox for displaying output.

h:inputTextArea displays a textarea for entering input.

h:inputSecret displays a textbox for entering password.

h:outputLabel displays a label.

h:outputLink displays a hypertext link.

h:selectOneMenu displays a combo box for selecting one item.

h:selectOneRadio displays a set of radio button.

h:selectManyCheckbox displays checkboxes.

h:selectOneListbox displays a list for selecting one item.

h:selectManyListbox displays a list for selecting multiple items.

f:selectItem specifies an item in an h:selectOneMenu, h:selectOneRadio,
or h:selectManyListbox.

h:message displays a message for validating input.

h:dataTable displays a data table.

h:column specifies a column in a data table.

h:graphicImage displays an image.

tabLe 39.1 JSF GUI Form Elements

Figure 39.11 A student registration form is displayed using JSF elements.

M39_LIAN0182_11_SE_C39.indd 11 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-12 Chapter 39 JavaServer Faces

16
17 <!-- Use h:panelGrid -->
18 <h:panelGrid columns="6" style="color:green">
19 <h:outputLabel value="Last Name"/>
20 <h:inputText id="lastNameInputText" />
21 <h:outputLabel value="First Name" />
22 <h:inputText id="firstNameInputText" />
23 <h:outputLabel value="MI" />
24 <h:inputText id="miInputText" size="1" />
25 </h:panelGrid>
26
27 <!-- Use radio buttons -->
28 <h:panelGrid columns="2">
29 <h:outputLabel>Gender </h:outputLabel>
30 <h:selectOneRadio id="genderSelectOneRadio">
31 <f:selectItem itemValue="Male"
32 itemLabel="Male"/>
33 <f:selectItem itemValue="Female"
34 itemLabel="Female"/>
35 </h:selectOneRadio>
36 </h:panelGrid>
37
38 <!-- Use combo box and list -->
39 <h:panelGrid columns="4">
40 <h:outputLabel value="Major "/>
41 <h:selectOneMenu id="majorSelectOneMenu">
42 <f:selectItem itemValue="Computer Science"/>
43 <f:selectItem itemValue="Mathematics"/>
44 </h:selectOneMenu>
45 <h:outputLabel value="Minor "/>
46 <h:selectManyListbox id="minorSelectManyListbox">
47 <f:selectItem itemValue="Computer Science"/>
48 <f:selectItem itemValue="Mathematics"/>
49 <f:selectItem itemValue="English"/>
50 </h:selectManyListbox>
51 </h:panelGrid>
52
53 <!-- Use check boxes -->
54 <h:panelGrid columns="4">
55 <h:outputLabel value="Hobby: "/>
56 <h:selectManyCheckbox id="hobbySelectManyCheckbox">
57 <f:selectItem itemValue="Tennis"/>
58 <f:selectItem itemValue="Golf"/>
59 <f:selectItem itemValue="Ping Pong"/>
60 </h:selectManyCheckbox>
61 </h:panelGrid>
62
63 <!-- Use text area -->
64 <h:panelGrid columns="1">
65 <h:outputLabel>Remarks:</h:outputLabel>
66 <h:inputTextarea id="remarksInputTextarea"
67 style="width:400px; height:50px;" />
68 </h:panelGrid>
69
70 <!-- Use command button -->
71 <h:commandButton value="Register" />
72 </h:form>
73 </h:body>
74 </html>

h:panelGrid

h:outputLabel

h:inputText

h:selectOneRadio
f:selectItem

h:selectOneMenu

h:selectManyListBox

h:selectManyCheckbox

h:inputTextarea

h:commandButton

M39_LIAN0182_11_SE_C39.indd 12 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.3 JSF GUI Components 39-13

The tags with prefix f are in the JSF core tag library. Line 6

xmlns:f="http://xmlns.jcp.org/jsf/core">

locates the library for these tags.
The h:graphicImage tag displays an image in the file usIcon.gif (line 14). The file is

located in the /resources/image folder. In JSF 2.0, all resources (image files, audio files, and
CCS files) should be placed under the resources folder under the Web Pages node. You
can create these folders as follows:

Step 1: Right-click the Web Pages node in the project pane to display a context menu
and choose New, Folder to display the New Folder dialog box. (If Folder is not in the
context menu, choose Other to locate it.)

Step 2: Enter resources as the Folder Name and click Finish to create the resources
folder, as shown in Figure 39.12.

Step 3: Right-click the resources node in the project pane to create the image folder
under resources. You can now place usIcon.gif under the image folder.

jsf core xmlns

h:graphicImage

Figure 39.12 The resources folder was created.

JSF provides h:panelGrid and h:panelGroup elements to contain and layout subele-
ments. h:panelGrid places the elements in a grid like the JavaFX GridPane. h:panelGrid
places the elements in a grid with the specified number of columns. Lines 18–25 place six
elements (labels and input texts) that are in an h:panelGrid. The columns attribute specifies
that each row in the grid has 6 columns. The elements are placed into a row from left to right
in the order they appear in the facelet. When a row is full, a new row is created to hold the
elements. We used h:panelGrid in this example. You may replace it with h:panelGroup
to see how the elements would be arranged.

You may use the style attribute with a JSF html tag to specify the CSS style for the ele-
ment and its subelements. The style attribute in line 18 specifies the color green for all ele-
ments in this h:panelGrid element.

The h:outputLabel element is for displaying a label (line 19). The value attribute speci-
fies the label’s text.

The h:inputText element is for displaying a text input box for the user to enter a text
(line 20). The id attribute is useful for other elements or the server program to reference this
element.

The h:selectOneRadio element is for displaying a group of radio buttons (line 30). Each
radio button is defined using an f:selectItem element (lines 31–34).

h:panelGrid

the style attribute

h:outputLabel

h:inputText

h:selectOneRadio

M39_LIAN0182_11_SE_C39.indd 13 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-14 Chapter 39 JavaServer Faces

The h:selectOneMenu element is for displaying a combo box (line 41). Each item in the
combo box is defined using an f:selectItem element (lines 42 and 43).

The h:selectManyListbox element is for displaying a list for the user to choose multiple
items in a list (line 46). Each item in the list is defined using an f:selectItem element (lines
47–49).

The h:selectManyCheckbox element is for displaying a group of check boxes (line 56).
Each item in the check box is defined using an f:selectItem element (lines 57–59).

The h:selectTextarea element is for displaying a text area for multiple lines of input
(line 66). The style attribute is used to specify the width and height of the text area (line 67).

The h:commandButton element is for displaying a button (line 71). When the button is
clicked, an action is performed. The default action is to request the same page from the server.
The next section shows how to process the form.

 39.3.1 What is the name space for JSF tags with prefix h and prefix f?

 39.3.2 Describe the use of the following tags?

 1 h:form, h:panelGroup, h:panelGrid, h:inputText, h:outputText,
 2 h:inputTextArea, h:inputSecret, h:outputLabel, h:outputLink,
 3 h:selectOneMenu, h:selectOneRadio, h:selectBooleanCheckbox,
 4 h:selectOneListbox, h:selectManyListbox, h:selectItem,
 5 h:message, h:dataTable, h:columm, h:graphicImage

39.4 Processing the Form
Processing forms is a common task for Web programming. JSF provides tools for pro-
cessing forms.

The preceding section introduced how to display a form using common JSF elements. This
section shows how to obtain and process the input.

To obtain input from the form, simply bind each input element with a property in a man-
aged bean. We now define a managed bean named registration as shown in Listing 39.5.

Listing 39.5 RegistrationJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.enterprise.context.RequestScoped;
 4 import javax.inject.Named;
 5
 6 @Named(value = "registration")
 7 @RequestScoped
 8 public class RegistrationJSFBean {
 9 private String lastName;
 10 private String firstName;
 11 private String mi;
 12 private String gender;
 13 private String major;
 14 private String[] minor;
 15 private String[] hobby;
 16 private String remarks;
 17
 18 public RegistrationJSFBean() {
 19 }
 20
 21 public String getLastName() {
 22 return lastName;
 23 }

h:selectOneMenu

h:selectManyListbox

h:selectManyCheckbox

h:selectTextarea

h:commandButton

Point
Check

Point
Key

managed bean
request scope
property lastName

M39_LIAN0182_11_SE_C39.indd 14 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.4 Processing the Form 39-15

 24
 25 public void setLastName(String lastName) {
 26 this.lastName = lastName;
 27 }
 28
 29 public String getFirstName() {
 30 return firstName;
 31 }
 32
 33 public void setFirstName(String firstName) {
 34 this.firstName = firstName;
 35 }
 36
 37 public String getMi() {
 38 return mi;
 39 }
 40
 41 public void setMi(String mi) {
 42 this.mi = mi;
 43 }
 44
 45 public String getGender() {
 46 return gender;
 47 }
 48
 49 public void setGender(String gender) {
 50 this.gender = gender;
 51 }
 52
 53 public String getMajor() {
 54 return major;
 55 }
 56
 57 public void setMajor(String major) {
 58 this.major = major;
 59 }
 60
 61 public String[] getMinor() {
 62 return minor;
 63 }
 64
 65 public void setMinor(String[] minor) {
 66 this.minor = minor;
 67 }
 68
 69 public String[] getHobby() {
 70 return hobby;
 71 }
 72
 73 public void setHobby(String[] hobby) {
 74 this.hobby = hobby;
 75 }
 76
 77 public String getRemarks() {
 78 return remarks;
 79 }
 80
 81 public void setRemarks(String remarks) {
 82 this.remarks = remarks;
 83 }

M39_LIAN0182_11_SE_C39.indd 15 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-16 Chapter 39 JavaServer Faces

 84
 85 public String getResponse() {
 86 if (lastName == null)
 87 return ""; // Request has not been made
 88 else {
 89 String allMinor = "";
 90 for (String s: minor) {
 91 allMinor += s + " ";
 92 }
 93
 94 String allHobby = "";
 95 for (String s: hobby) {
 96 allHobby += s + " ";
 97 }
 98
 99 return "<p style=\"color:red\">You entered
" +
100 "Last Name: " + lastName + "
" +
101 "First Name: " + firstName + "
" +
102 "MI: " + mi + "
" +
103 "Gender: " + gender + "
" +
104 "Major: " + major + "
" +
105 "Minor: " + allMinor + "
" +
106 "Hobby: " + allHobby + "
" +
107 "Remarks: " + remarks + "</p>";
108 }
109 }
110 }

The RegistrationJSFBean class is a managed bean that defines the properties lastName,
firstName, mi, gender, major, minor, and remarks, which will be bound to the elements
in the JSF registration form.

The registration form can now be revised as shown in Listing 39.6. Figure 39.13 shows that
new JSF page displays the user input upon clicking the Register button.

Listing 39.6 ProcessStudentRegistrationForm.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "–//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Student Registration Form</title>
 9 </h:head>
10 <h:body>
11 <h:form>
12 <!-- Use h:graphicImage -->
13 <h3>Student Registration Form
14 <h:graphicImage name="usIcon.gif" library="image"/>
15 </h3>
16
17 <!-- Use h:panelGrid -->
18 <h:panelGrid columns="6" style="color:green">
19 <h:outputLabel value="Last Name"/>
20 <h:inputText id="lastNameInputText"
21 value="#{registration.lastName}"/>
22 <h:outputLabel value="First Name" />
23 <h:inputText id="firstNameInputText"
24 value="#{registration.firstName}"/>

getResponse()

bean properties

jsf core namespace

bind lastName

bind firstName

M39_LIAN0182_11_SE_C39.indd 16 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.4 Processing the Form 39-17

25 <h:outputLabel value="MI" />
26 <h:inputText id="miInputText" size="1"
27 value="#{registration.mi}"/>
28 </h:panelGrid>
29
30 <!-- Use radio buttons -->
31 <h:panelGrid columns="2">
32 <h:outputLabel>Gender </h:outputLabel>
33 <h:selectOneRadio id="genderSelectOneRadio"
34 value="#{registration.gender}">
35 <f:selectItem itemValue="Male"
36 itemLabel="Male"/>
37 <f:selectItem itemValue="Female"
38 itemLabel="Female"/>
39 </h:selectOneRadio>
40 </h:panelGrid>
41
42 <!-- Use combo box and list -->
43 <h:panelGrid columns="4">
44 <h:outputLabel value="Major "/>
45 <h:selectOneMenu id="majorSelectOneMenu"
46 value="#{registration.major}">
47 <f:selectItem itemValue="Computer Science"/>
48 <f:selectItem itemValue="Mathematics"/>
49 </h:selectOneMenu>
50 <h:outputLabel value="Minor "/>
51 <h:selectManyListbox id="minorSelectManyListbox"
52 value="#{registration.minor}">
53 <f:selectItem itemValue="Computer Science"/>
54 <f:selectItem itemValue="Mathematics"/>
55 <f:selectItem itemValue="English"/>
56 </h:selectManyListbox>
57 </h:panelGrid>
58
59 <!-- Use check boxes -->
60 <h:panelGrid columns="4">
61 <h:outputLabel value="Hobby: "/>
62 <h:selectManyCheckbox id="hobbySelectManyCheckbox"
63 value="#{registration.hobby}">
64 <f:selectItem itemValue="Tennis"/>
65 <f:selectItem itemValue="Golf"/>
66 <f:selectItem itemValue="Ping Pong"/>
67 </h:selectManyCheckbox>
68 </h:panelGrid>
69
70 <!-- Use text area -->
71 <h:panelGrid columns="1">
72 <h:outputLabel>Remarks:</h:outputLabel>
73 <h:inputTextarea id="remarksInputTextarea"
74 style="width:400px; height:50px;"
75 value="#{registration.remarks}"/>
76 </h:panelGrid>
77
78 <!-- Use command button -->
79 <h:commandButton value="Register" />
80

81 <h:outputText escape="false" style="color:red"
82 value="#{registration.response}" />
83 </h:form>
84 </h:body>
85 </html>

bind mi

bind gender

bind major

bind minor

bind hobby

bind remarks

bind response

M39_LIAN0182_11_SE_C39.indd 17 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-18 Chapter 39 JavaServer Faces

The new JSF form in this listing binds the h:inputText element for last name, first name,
and mi with the properties lastName, firstName, and mi in the managed bean (lines 21, 24,
and 27). When the Register button is clicked, the page is sent to the server, which invokes the
setter methods to set the properties in the managed bean.

The h:selectOneRadio element is bound to the gender property (line 34). Each radio
button has an itemValue. The selected radio button’s itemValue is set to the gender prop-
erty in the bean when the page is sent to the server.

The h:selectOneMenu element is bound to the major property (line 46). When the page
is sent to the server, the selected item is returned as a string and is set to the major property.

The h:selectManyListbox element is bound to the minor property (line 52). When the
page is sent to the server, the selected items are returned as an array of strings and set to the
minor property.

The h:selectManyCheckbox element is bound to the hobby property (line 63). When
the page is sent to the server, the checked boxes are returned as an array of itemValues and
set to the hobby property.

The h:selectTextarea element is bound to the remarks property (line 75). When the
page is sent to the server, the content in the text area is returned as a string and set to the
remarks property.

The h:outputText element is bound to the response property (line 82). This is a read-
only property in the bean. It is "" if lastName is null (lines 86 and 87 in Listing 39.5). When
the page is returned to the client, the response property value is displayed in the output text
element (line 82).

binding input texts

binding radio buttons

binding combo box

binding list box

binding check boxes

binding text area

binding response

Figure 39.13 The user input is collected and displayed after clicking the Register button.

M39_LIAN0182_11_SE_C39.indd 18 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.5 Case Study: Calculator 39-19

The h:outputText element’s escape attribute is set to false (line 81) to enable the
contents to be displayed in HTML. By default, the escape attribute is true, which indicates
the contents are considered regular text.

 39.4.1 In the h:outputText tag, what is the escape attribute for?

 39.4.2 Does every GUI component tag in JSF have the style attribute?

39.5 Case Study: Calculator
This section gives a case study on using GUI elements and processing forms.

This section uses JSF to develop a calculator to perform addition, subtraction, multiplication,
and division, as shown in Figure 39.14.

escape attribute

Point
Check

Point
Key

Figure 39.14 This JSF application enables you to perform addition, subtraction,
multiplication, and division.

Here are the steps to develop this project:

Step 1. Create a new managed bean named calculator with the request scope as
shown in Listing 39.7, CalculatorJSFBean.java.

Step 2. Create a JSF facelet in Listing 39.8, Calculator.xhtml.

Listing 39.7 CalculatorJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.inject.Named;
 4 import javax.enterprise.context.RequestScoped;
 5
 6 @Named(value = "calculator")
 7 @RequestScoped
 8 public class CalculatorJSFBean {
 9 private Double number1;
10 private Double number2;
11 private Double result;
12
13 public CalculatorJSFBean() {
14 }
15
16 public Double getNumber1() {
17 return number1;
18 }
19
20 public Double getNumber2() {
21 return number2;
22 }
23

create managed bean

create JSF facelet

property number1
property number2
property result

M39_LIAN0182_11_SE_C39.indd 19 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-20 Chapter 39 JavaServer Faces

24 public Double getResult() {
25 return result;
26 }
27
28 public void setNumber1(Double number1) {
29 this.number1 = number1;
30 }
31
32 public void setNumber2(Double number2) {
33 this.number2 = number2;
34 }
35
36 public void setResult(Double result) {
37 this.result = result;
38 }
39
40 public void add() {
41 result = number1 + number2;
42 }
43
44 public void subtract() {
45 result = number1 - number2;
46 }
47
48 public void divide() {
49 result = number1 / number2;
50 }
51
52 public void multiply() {
53 result = number1 * number2;
54 }
55 }

The managed bean has three properties number1, number2, and result (lines 9–38). The
methods add(), subtract(), divide(), and multiply() add, subtract, multiply, and
divide number1 with number2 and assigns the result to result (lines 40–54).

Listing 39.8 Calculator.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Calculator</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:panelGrid columns="6">
12 <h:outputLabel value="Number 1"/>
13 <h:inputText id="number1InputText" size ="4"
14 style="text-align: right"
15 value="#{calculator.number1}"/>
16 <h:outputLabel value="Number 2" />
17 <h:inputText id="number2InputText" size ="4"
18 style="text-align: right"
19 value="#{calculator.number2}"/>
20 <h:outputLabel value="Result" />
21 <h:inputText id="resultInputText" size ="4"

add

subtract

divide

multiply

right align
bind text input

M39_LIAN0182_11_SE_C39.indd 20 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.6 Session Tracking 39-21

22 style="text-align: right"
23 value="#{calculator.result}"/>
24 </h:panelGrid>
25
26 <h:panelGrid columns="4">
27 <h:commandButton value="Add"
28 action ="#{calculator.add}"/>
29 <h:commandButton value="Subtract"
30 action ="#{calculator.subtract}"/>
31 <h:commandButton value="Multiply"
32 action ="#{calculator.multiply}"/>
33 <h:commandButton value="Divide"
34 action ="#{calculator.divide}"/>
35 </h:panelGrid>
36 </h:form>
37 </h:body>
38 </html>

Three text input components along with their labels are placed in the grid panel (lines 11–24).
Four button components are placed in the grid panel (lines 26–35).

The bean property number1 is bound to the text input for Number 1 (line 15). The CSS
style text-align: right (line 14) specifies that the text is right aligned in the input box.

The action attribute for the Add button is set to the add method in the calculator bean
(line 28). When the Add button is clicked, the add method in the bean is invoked to add
number1 with number2 and assign the result to result. Since the result property is
bound to the Result input text (line 23), the new result is now displayed in the text input
field.

39.6 Session Tracking
You can create a managed bean at the application scope, session scope, view scope,
or request scope.

JSF supports session tracking for managed beans at the application scope, session scope,
view scope, and request scope. The scope is the lifetime of a bean. A request-scoped bean
is alive in a single HTTP request. After the request is processed, the bean is no longer alive.
A view-scoped bean lives as long as you are in the same JSF page. A session-scoped bean
is alive for the entire Web session between a client and the server. An application-scoped
bean lives as long as the Web application runs. In essence, a request-scoped bean is created
once for a request; a view-scoped bean is created once for the view; a session-scoped bean
is created once for the entire session; and an application-scoped bean is created once for
the entire application. A managed bean with a session scope must be serializable because
the system may need to free resources during and session and stores the bean to a file if the
bean is not used for a while. When the bean is used again, the system will restore the bean
to the memory.

Consider the following example that prompts the user to guess a number. When the page
starts, the program randomly generates a number between 0 and 99. This number is stored in
a bean. When the user enters a guess, the program checks the guess with the random number
in the bean and tells the user whether the guess is too high, too low, or just right, as shown in
Figure 39.15.

Here are the steps to develop this project:

Step 1. Create a new managed bean named guessNumber with the view scope as shown
in Listing 39.9, GuessNumberJSFBean.java.

Step 2. Create a JSF facelet in Listing 39.10, GuessNumber.xhtml.

action

Point
Key

scope

request scope
view scope
session scope
application scope

create managed bean

create JSF facelet

M39_LIAN0182_11_SE_C39.indd 21 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-22 Chapter 39 JavaServer Faces

Listing 39.9 GuessNumberJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.inject.Named;
 4 import javax.faces.view.ViewScoped;
 5
 6 @Named(value = "guessNumber")
 7 @ViewScoped
 8 public class GuessNumberJSFBean {
 9 private int number;
10 private String guessString;
11
12 public GuessNumberJSFBean() {
13 number = (int)(Math.random() * 100);
14 }
15
16 public String getGuessString() {
17 return guessString;
18 }

view scope

random number
guess by user

create random number

getter method

Figure 39.15 The user enters a guess and the program displays the result.

M39_LIAN0182_11_SE_C39.indd 22 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.6 Session Tracking 39-23

19
20 public void setGuessString(String guessString) {
21 this.guessString = guessString;
22 }
23
24 public String getResponse() {
25 if (guessString == null)
26 return ""; // No user input yet
27
28 int guess = Integer.parseInt(guessString);
29 if (guess < number)
30 return "Too low";
31 else if (guess == number)
32 return "You got it";
33 else
34 return "Too high";
35 }
36 }

The managed bean uses the @ViewScope annotation (line 7) to set up the view scope for the
bean. The view scope is most appropriate for this project. The bean is alive as long as the view
is not changed. The bean is created when the page is displayed for the first time. A random
number between 0 and 99 is assigned to number (line 13) when the bean is created. This
number will not change as long as the bean is alive in the same view.

The getResponse method converts guessString from the user input to an integer (line 28)
and determines if the guess is too low (line 30), too high (line 34), and just right (line 32).

Listing 39.10 GuessNumber.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Guess a number</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:outputLabel value="Enter you guess: "/>
12 <h:inputText style="text-align: right; width: 50px"
13 id="guessInputText"
14 value="#{guessNumber.guessString}"/>
15 <h:commandButton style="margin-left: 60px" value="Guess" />
16

17 <h:outputText style="color: red"
18 value="#{guessNumber.response}" />
19 </h:form>
20 </h:body>
21 </html>

The bean property guessString is bound to the text input (line 14). The CSS style text-
align: right (line 13) specifies that the text is right aligned in the input box.

The CSS style margin-left: 60px (line 15) specifies that the command button has a
left margin of 60 pixels.

The bean property response is bound to the text output (line 18). The CSS style color:
red (line 17) specifies that the text is displayed in red in the output box.

The project uses the view scope. What happens if the scope is changed to the request scope?
Every time the page is refreshed, JSF creates a new bean with a new random number. What
happens if the scope is changed to the session scope? The bean will be alive as long as the

setter method

get response

check guess

bind text input

bind text output

scope

M39_LIAN0182_11_SE_C39.indd 23 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-24 Chapter 39 JavaServer Faces

browser is alive. What happens if the scope is changed to the application scope? The bean
will be created once when the application is launched from the server. So every client will use
the same random number.

 39.6.1 What is a scope? What are the available scopes in JSF? Explain request scope, view
scope, session scope, and application scope. How do you set a request scope, view
scope, session scope, and application scope in a managed bean?

 39.6.2 What happens if the bean scope in Listing 39.9, GuessNumberJSFBean.java is
changed to request?

 39.6.3 What happens if the bean scope in Listing 39.9, GuessNumberJSFBean.java is
changed to session?

 39.6.4 What happens if the bean scope in Listing 39.9, GuessNumberJSFBean.java is
changed to application?

39.7 Validating Input
JSF provides tools for validating user input.

In the preceding GuessNumber page, an error would occur if you entered a noninteger in the
input box before clicking the Guess button. One way to fix the problem is to check the text
field before processing any event. But a better way is to user the validators. You can use the
standard validator tags in the JSF Core Tag Library or create custom validators. Table 39.2
lists some JSF input validator tags.

Point
Check

Point
Key

JSF Tag Description

f:validateLength validates the length of the input.

f:validateDoubleRange validates whether numeric input falls within acceptable range of double
values.

f:validateLongRange validates whether numeric input falls within acceptable range of long
values.

f:validateRequired validates whether a field is not empty.

f:validateRegex validates whether the input matches a regualar expression.

f:validateBean invokes a custom method in a bean to perform custom validation.

tabLe 39.2 JSF Input Validator Tags

Consider the following example that displays a form for collecting user input as shown in
 Figure 39.16. All text fields in the form must be filled. If not, error messages are displayed. The
SSN must be formatted correctly. If not, an error is displayed. If all input are correct, clicking
Submit displays the result in an output text, as shown in Figure 39.17.

Here are the steps to create this project.

Step 1. Create a new page in Listing 39.11, ValidateForm.xhtml.

Step 2. Create a new managed bean named validateForm, as shown in Listing 39.12.

Listing 39.11 ValidateForm.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"

M39_LIAN0182_11_SE_C39.indd 24 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.7 Validating Input 39-25

Figure 39.16 The input fields are validated.

(a) The required messages are displayed if input is required, but empty.

(b) Error messages are displayed if input is incorrect.

Figure 39.17 The correct input values are displayed.

 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>

M39_LIAN0182_11_SE_C39.indd 25 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-26 Chapter 39 JavaServer Faces

 8 <title>Validate Form</title>
 9 </h:head>
10 <h:body>
11 <h:form>
12 <h:panelGrid columns="3">
13 <h:outputLabel value="Name:"/>
14 <h:inputText id="nameInputText" required="true"
15 requiredMessage="Name is required"
16 validatorMessage="Name must have 1 to 10 chars"
17 value="#{validateForm.name}">
18 <f:validateLength minimum="1" maximum="10" />
19 </h:inputText>
20 <h:message for="nameInputText" style="color:red"/>
21
22 <h:outputLabel value="SSN:" />
23 <h:inputText id="ssnInputText" required="true"
24 requiredMessage="SSN is required"
25 validatorMessage="Invalid SSN"
26 value="#{validateForm.ssn}">
27 <f:validateRegex pattern="[\d]{3}–[\d]{2}–[\d]{4}"/>
28 </h:inputText>
29 <h:message for="ssnInputText" style="color:red"/>
30
31 <h:outputLabel value="Age:" />
32 <h:inputText id="ageInputText" required="true"
33 requiredMessage="Age is required"
34 validatorMessage="Age must be between 16 and 120"
35 value="#{validateForm.ageString}">
36 <f:validateLongRange minimum="16" maximum="120"/>
37 </h:inputText>
38 <h:message for="ageInputText" style="color:red"/>
39
40 <h:outputLabel value="Height:" />
41 <h:inputText id="heightInputText" required="true"
42 requiredMessage="Height is required"
43 validatorMessage="Height must be between 3.5 and 9.5"
44 value="#{validateForm.heightString}">
45 <f:validateDoubleRange minimum="3.5" maximum="9.5"/>
46 </h:inputText>
47 <h:message for="heightInputText" style="color:red"/>
48 </h:panelGrid>
49
50 <h:commandButton value="Submit" />
51
52 <h:outputText style="color:red"
53 value="#{validateForm.response}" />
54 </h:form>
55 </h:body>
56 </html>

For each input text field, set its required attribute true (lines 14, 23, 32, and 41) to indicate
that an input value is required for the field. When a required input field is empty, the
requiredMessage is displayed (lines 15, 24, 33, and 42).

The validatorMessage attribute specifies a message to be displayed if the input field is
invalid (line 16). The f:validateLength tag specifies the minimum or maximum length of
the input (line 18). JSF will determine whether the input length is valid.

The h:message element displays the validatorMessage if the input is invalid. The element’s
for attribute specifies the id of the element for which the message will be displayed (line 20).

The f:validateRegex tag specifies a regular expression for validating the input
(line 27). For information on regular expression, see Appendix H.

required input
required message
validator message

validate length

message element

validate regex

validate integer range

validate double range

required attribute

requiredMessage

validatorMessage

f:validateLength

h:message

f:validateRegex

M39_LIAN0182_11_SE_C39.indd 26 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.7 Validating Input 39-27

The f:validateLongRange tag specifies a range for an integer input using the minimum
and maximum attributes (line 45). In this project, a valid age value is between 16 and 120.

The f:validateDoubleRange tag specifies a range for a double input using the minimum
and maximum attributes (line 36). In this project, a valid height value is between 3.5 and 9.5.

Listing 39.12 ValidateFormJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.enterprise.context.RequestScoped;
 4 import javax.inject.Named;
 5
 6 @Named(value = "validateForm")
 7 @RequestScoped
 8 public class ValidateFormJSFBean {
 9 private String name;
10 private String ssn;
11 private String ageString;
12 private String heightString;
13
14 public String getName() {
15 return name;
16 }
17
18 public void setName(String name) {
19 this.name = name;
20 }
21
22 public String getSsn() {
23 return ssn;
24 }
25
26 public void setSsn(String ssn) {
27 this.ssn = ssn;
28 }
29
30 public String getAgeString() {
31 return ageString;
32 }
33
34 public void setAgeString(String ageString) {
35 this.ageString = ageString;
36 }
37
38 public String getHeightString() {
39 return heightString;
40 }
41
42 public void setHeightString(String heightString) {
43 this.heightString = heightString;
44 }
45
46 public String getResponse() {
47 if (name == null || ssn == null || ageString == null
48 || heightString == null) {
49 return "";
50 }
51 else {
52 return "You entered " +
53 " Name: " + name +
54 " SSN: " + ssn +

f:validateLongRange

some input not set

f:validateDoubleRange

M39_LIAN0182_11_SE_C39.indd 27 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-28 Chapter 39 JavaServer Faces

55 " Age: " + ageString +
56 " Height: " + heightString;
57 }
58 }
59 }

If an input is invalid, its value is not set to the bean. So only when all input are correct, the
getResponse() method will return all input values (lines 46–58).

 39.7.1 Write a tag that validates an input text with minimal length of 2 and maximum 12.

 39.7.2 Write a tag that validates an input text for SSN using a regular expression.

 39.7.3 Write a tag that validates an input text for a double value with minimal 4.5 and
maximum 19.9.

 39.7.4 Write a tag that validates an input text for an integer value with minimal 4 and
maximum 20.

 39.7.5 Write a tag that makes an input text required.

39.8 Binding Database with Facelets
You can bind a database in JSF applications.

Often you need to access a database from a webpage. This section gives examples of building
Web applications using databases.

Consider the following example that lets the user choose a course, as shown in Figure 39.18.
After a course is selected in the combo box, the students enrolled in the course are displayed in the
table, as shown in Figure 39.19. In this example, all the course titles in the Course table are bound
to the combo box and the query result for the students enrolled in the course is bound to the table.

Here are the steps to create this project:

Step 1. Create a managed bean named courseName with application scope, as shown in
Listing 39.13.

Step 2. Create a JSF in Listing 39.14, DisplayStudent.xhtml.

Step 3. Create a cascading style sheet for formatting the table as follows:

Point
Check

Point
Key

managed bean

JSF page

style sheet

Figure 39.18 You need to choose a course and display the students enrolled in the course.

M39_LIAN0182_11_SE_C39.indd 28 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.8 Binding Database with Facelets 39-29

Step 3.1. Right-click the resources node to choose New, Others to display the New
File dialog box, as shown in Figure 39.20.

Step 3.2. Choose Others in the Categories section and Cascading Style Sheet in the File
Types section to display the New Cascading Style Sheet dialog box, as shown in Figure
39.21.

Step 3.3. Enter tablestyle as the File Name and click Finish to create tablestyle.css
under the resources node.

Step 3.4. Define the CSS style as shown in Listing 39.15.

Figure 39.19 The table displays the students enrolled in the course.

Figure 39.20 You can create CSS files for Web project in NetBenas.

M39_LIAN0182_11_SE_C39.indd 29 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-30 Chapter 39 JavaServer Faces

Figure 39.21 The New Cascading Style Sheet dialog box creates a new style sheet file.

Listing 39.13 CourseNameJSFBean.java
 1 package jsf2demo;
 2
 3 import java.sql.*;
 4 import java.util.ArrayList;
 5 import javax.enterprise.context.ApplicationScoped;
 6 import javax.inject.Named;
 7
 8 @Named(value = "courseName")
 9 @ApplicationScoped
10 public class CourseNameJSFBean {
11 private PreparedStatement studentStatement = null;
12 private String choice; // Selected course
13 private String[] titles; // Course titles
14
15 /** Creates a new instance of CourseName */
16 public CourseNameJSFBean() {
17 initializeJdbc();
18 }
19
20 /** Initialize database connection */
21 private void initializeJdbc() {
22 try {
23 Class.forName("com.mysql.jdbc.Driver");
24 System.out.println("Driver loaded");
25
26 // Connect to the sample database
27 Connection connection = DriverManager.getConnection(
28 "jdbc:mysql://localhost/javabook", "scott", "tiger");
29
30 // Get course titles
31 PreparedStatement statement = connection.prepareStatement(
32 "select title from course");
33
34 ResultSet resultSet = statement.executeQuery();
35
36 // Store resultSet into array titles
37 ArrayList<String> list = new ArrayList<>();

application scope

initialize JDBC

connect to database

get course titles

execute SQL

M39_LIAN0182_11_SE_C39.indd 30 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.8 Binding Database with Facelets 39-31

38 while (resultSet.next()) {
39 list.add(resultSet.getString(1));
40 }
41 titles = new String[list.size()]; // Array for titles
42 list.toArray(titles); // Copy strings from list to array
43
44 // Define a SQL statement for getting students
45 studentStatement = connection.prepareStatement(
46 "select Student.ssn, "
47 + "student.firstName, Student.mi, Student.lastName, "
48 + "Student.phone, Student.birthDate, Student.street, "
49 + "Student.zipCode, Student.deptId "
50 + "from Student, Enrollment, Course "
51 + "where Course.title = ? "
52 + "and Student.ssn = Enrollment.ssn "
53 + "and Enrollment.courseId = Course.courseId;");
54 }
55 catch (Exception ex) {
56 ex.printStackTrace();
57 }
58 }
59
60 public String[] getTitles() {
61 return titles;
62 }
63
64 public String getChoice() {
65 return choice;
66 }
67
68 public void setChoice(String choice) {
69 this.choice = choice;
70 }
71
72 public ResultSet getStudents() throws SQLException {
73 if (choice == null) {
74 if (titles.length == 0)
75 return null;
76 else
77 studentStatement.setString(1, titles[0]);
78 }
79 else {
80 studentStatement.setString(1, choice); // Set course title
81 }
82
83 // Get students for the specified course
84 return studentStatement.executeQuery();
85 }
86 }

We use the same MySQL database javabook created in Chapter 34, “Java Database Program-
ming.” The scope for this managed bean is application. The bean is created when the project is
launched from the server. The initializeJdbc method loads the JDBC driver for MySQL
(lines 23 and 24), connects to the MySQL database (lines 27 and 28), creates statement for
obtaining course titles (lines 31 and 32), and creates a statement for obtaining the student infor-
mation for the specified course (lines 45–53). Lines 31–42 execute the statement for obtaining
course titles and store them in array titles.

The getStudents() method returns a ResultSet that consists of all students enrolled in
the specified course (lines 72–85). The choice for the title is set in the statement to obtain the

titles array

get students

set a default course

set a course

return students

M39_LIAN0182_11_SE_C39.indd 31 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-32 Chapter 39 JavaServer Faces

student for the specified title (line 80). If choice is null, the first title in the titles array is set
in the statement (line 77). If no titles in the course, getStudents() returns null (line 75).

TIP
In order to use the MySQL database from this project, you have to add the MySQL JDBC
driver from the Libraries node in the Project pane in NetBeans.

Listing 39.14 DisplayStudent.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Display Student</title>
 9 <h:outputStylesheet name="tablestyle.css"/>
10 </h:head>
11 <h:body>
12 <h:form>
13 <h:outputLabel value="Choose a Course: " />
14 <h:selectOneMenu value="#{courseName.choice}">
15 <f:selectItems value="#{courseName.titles}" />
16 </h:selectOneMenu>
17
18 <h:commandButton style="margin-left: 20px"
19 value="Display Students" />
20
21

22 <h:dataTable value="#{courseName.students}" var="student"
23 rowClasses="oddTableRow, evenTableRow"
24 headerClass="tableHeader"
25 styleClass="table">
26 <h:column>
27 <f:facet name="header">SSN</f:facet>
28 #{student.ssn}
29 </h:column>
30
31 <h:column>
32 <f:facet name="header">First Name</f:facet>
33 #{student.firstName}
34 </h:column>
35
36 <h:column>
37 <f:facet name="header">MI</f:facet>
38 #{student.mi}
39 </h:column>
40
41 <h:column>
42 <f:facet name="header">Last Name</f:facet>
43 #{student.lastName}
44 </h:column>
45
46 <h:column>
47 <f:facet name="header">Phone</f:facet>
48 #{student.phone}
49 </h:column>
50
51 <h:column>

add MySQL in the Libraries
node

style sheet

bind choice
titles

display button

bind result set
rowClasses
headerClass
styleClass

ssn column

firstName column

mi column

lastName column

phone column

M39_LIAN0182_11_SE_C39.indd 32 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.8 Binding Database with Facelets 39-33

52 <f:facet name="header">Birth Date</f:facet>
53 #{student.birthDate}
54 </h:column>
55
56 <h:column>
57 <f:facet name="header">Dept</f:facet>
58 #{student.deptId}
59 </h:column>
60 </h:dataTable>
61 </h:form>
62 </h:body>
63 </html>

Line 9 specifies that the style sheet tablestyle.css created in Step 3 is used in this XMTHL file.
The rowClasses = "oddTableRow, evenTableRow" attribute specifies the style applied
to the rows alternately using oddTableRow and evenTableRow (line 23). The header-
Classes = "tableHeader" attribute specifies that the tableHeader class is used for
header style (line 24). The styleClasses = "table" attribute specifies that the table
class is used for the style of all other elements in the table (line 25).

Line 14 binds the choice property in the courseName bean with the combo box. The
selection values in the combo box are bound with the titles array property (line 15).

Line 22 binds the table value with a database result set using the attribute
value = "#{courseName.students}". The var="student" attribute associates a row
in the result set with student. Lines 26–59 specify the column values using student.ssn
(line 28), student.firstName (line 33), student.mi (line 38), student.lastName (line 33),
student.phone (line 48), student.birthDate (line 53), and student.deptId (line 58).

Listing 39.15 tablestyle.css
 1 /* Style for table */
 2 .tableHeader {
 3 font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;
 4 border-collapse:collapse;
 5 font-size:1.1em;
 6 text-align:left;
 7 padding-top:5px;
 8 padding-bottom:4px;
 9 background-color:#A7C942;
10 color:white;
11 border:1px solid #98bf21;
12 }
13
14 .oddTableRow {
15 border:1px solid #98bf21;
16 }
17
18 .evenTableRow {
19 background-color: #eeeeee;
20 font-size:1em;
21
22 padding:3px 7px 2px 7px;
23
24 color:#000000;
25 background-color:#EAF2D3;
26 }
27
28 .table {
29 border:1px solid green;
30 }

birthDate column

deptId column

tableHeader

oddTableRow

evenTableRow

table

M39_LIAN0182_11_SE_C39.indd 33 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-34 Chapter 39 JavaServer Faces

The style sheet file defines the style classes tableHeader (line 2) for table header style,
oddTableRow for odd table rows (line 14), evenTableRow for even table rows (line 18), and
table for all other table elements (line 28).

39.9 Opening New JSF Pages
You can open new JSF pages from the current JSF pages.

All the examples you have seen so far use only one JSF page in a project. Suppose you want to
register student information to the database. The application first displays the page as shown
in Figure 39.22 to collect student information. After the user enters the information and clicks
the Submit button, a new page is displayed to ask the user to confirm the input, as shown in
Figure 39.23. If the user clicks the Confirm button, the data are stored into the database and
the status page is displayed, as shown in Figure 39.24. If the user clicks the Go Back button,
it goes back to the first page.

Point
Key

Figure 39.22 This page lets the user enter input.

For this project, you need to create three JSF pages named AddressRegistration.xhtml,
ConfirmAddress.xhtml, and AddressStoredStatus.xhtml in Listings 39.16–39.18. The project
starts with AddressRegistration.xhtml. When clicking the Submit button, the action for the
button returns “ConfirmAddress” if the last name and first name are not empty, which causes
ConfirmAddress.xhtml to be displayed. When clicking the Confirm button, the status page
AddressStoredStatus.xhtml is displayed. When clicking the Go Back button, the first page
AddressRegistration.xhtml is now displayed.

Listing 39.16 AddressRegistration.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html"
 6 xmlns:f="http://xmlns.jcp.org/jsf/core">
 7 <h:head>
 8 <title>Student Registration Form</title>

jsf core namespace

M39_LIAN0182_11_SE_C39.indd 34 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.9 Opening New JSF Pages 39-35

 9 </h:head>
10 <h:body>
11 <h:form>
12 <!-- Use h:graphicImage -->
13 <h3>Student Registration Form
14 <h:graphicImage name="usIcon.gif" library="image"/>
15 </h3>
16
17 Please register to your instructor's student address book.
18 <!-- Use h:panelGrid -->
19 <h:panelGrid columns="6">
20 <h:outputLabel value="Last Name" style="color:red"/>
21 <h:inputText id="lastNameInputText"
22 value="#{addressRegistration.lastName}"/>
23 <h:outputLabel value="First Name" style="color:red"/>
24 <h:inputText id="firstNameInputText"
25 value="#{addressRegistration.firstName}"/>
26 <h:outputLabel value="MI" />
27 <h:inputText id="miInputText" size="1"
28 value="#{addressRegistration.mi}"/>
29 </h:panelGrid>
30

bind lastName

bind firstName

bind mi

Figure 39.23 This page lets the user confirm the input.

Figure 39.24 This page displays the status of the user input.

M39_LIAN0182_11_SE_C39.indd 35 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-36 Chapter 39 JavaServer Faces

31 <h:panelGrid columns="4">
32 <h:outputLabel value="Telephone"/>
33 <h:inputText id="telephoneInputText"
34 value="#{addressRegistration.telephone}"/>
35 <h:outputLabel value="Email"/>
36 <h:inputText id="emailInputText"
37 value="#{addressRegistration.email}"/>
38 </h:panelGrid>
39
40 <h:panelGrid columns="4">
41 <h:outputLabel value="Street"/>
42 <h:inputText id="streetInputText"
43 value="#{addressRegistration.street}"/>
44 </h:panelGrid>
45
46 <h:panelGrid columns="6">
47 <h:outputLabel value="City"/>
48 <h:inputText id="cityInputText"
49 value="#{addressRegistration.city}"/>
50 <h:outputLabel value="State"/>
51 <h:selectOneMenu id="stateSelectOneMenu"
52 value="#{addressRegistration.state}">
53 <f:selectItem itemLabel="Georgia-GA" itemValue="GA" />
54 <f:selectItem itemLabel="Oklahoma-OK" itemValue="OK" />
55 <f:selectItem itemLabel="Indiana-IN" itemValue="IN"/>
56 </h:selectOneMenu>
57 <h:outputLabel value="Zip"/>
58 <h:inputText id="zipInputText"
59 value="#{addressRegistration.zip}"/>
60 </h:panelGrid>
61
62 <!-- Use command button -->
63 <h:commandButton value="Register"
64 action="#{addressRegistration.processSubmit()}"/>
65

66 <h:outputText escape="false" style="color:red"
67 value="#{addressRegistration.requiredFields}" />
68 </h:form>
69 </h:body>
70 </html>

Listing 39.17 ConfirmAddress.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Confirm Student Registration</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:outputText escape="false" style="color:red"
12 value="#{registration1.input}" />
13 <h:panelGrid columns="2">
14 <h:commandButton value="Confirm"
15 action = "#{registration1.storeStudent()}"/>
16 <h:commandButton value="Go Back"
17 action = "AddressRegistration"/>

bind telephone

bind email

bind street

bind city

bind state

bind zip

process register

process confirm
go to AddressRegistra-
tion page

M39_LIAN0182_11_SE_C39.indd 36 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.9 Opening New JSF Pages 39-37

18 </h:panelGrid>
19 </h:form>
20 </h:body>
21 </html>

Listing 39.18 AddressStoredStatus.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>Address Stored?</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:outputText escape="false" style="color:green"
12 value="#{registration1.status}" />
13 </h:form>
14 </h:body>
15 </html>

Listing 39.19 AddressRegistrationJSFBean.java
 1 package jsf2demo;
 2
 3 import javax.inject.Named;
 4 import javax.enterprise.context.SessionScoped;
 5 import java.sql.*;
 6 import java.io.Serializable;
 7
 8 @Named(value = "addressRegistration")
 9 @SessionScoped
 10 public class AddressRegistrationJSFBean implements Serializable {
 11 private String lastName;
 12 private String firstName;
 13 private String mi;
 14 private String telephone;
 15 private String email;
 16 private String street;
 17 private String city;
 18 private String state;
 19 private String zip;
 20 private String status = "Nothing stored";
 21 // Use a prepared statement to store a student into the database
 22 private PreparedStatement pstmt;
 23
 24 public AddressRegistrationJSFBean() {
 25 initializeJdbc();
 26 }
 27
 28 public String getLastName() {
 29 return lastName;
 30 }
 31
 32 public void setLastName(String lastName) {
 33 this.lastName = lastName;
 34 }
 35

display status

managed bean
session scope

property lastName

initialize database

M39_LIAN0182_11_SE_C39.indd 37 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-38 Chapter 39 JavaServer Faces

 36 public String getFirstName() {
 37 return firstName;
 38 }
 39
 40 public void setFirstName(String firstName) {
 41 this.firstName = firstName;
 42 }
 43
 44 public String getMi() {
 45 return mi;
 46 }
 47
 48 public void setMi(String mi) {
 49 this.mi = mi;
 50 }
 51
 52 public String getTelephone() {
 53 return telephone;
 54 }
 55
 56 public void setTelephone(String telephone) {
 57 this.telephone = telephone;
 58 }
 59
 60 public String getEmail() {
 61 return email;
 62 }
 63
 64 public void setEmail(String email) {
 65 this.email = email;
 66 }
 67
 68 public String getStreet() {
 69 return street;
 70 }
 71
 72 public void setStreet(String street) {
 73 this.street = street;
 74 }
 75
 76 public String getCity() {
 77 return city;
 78 }
 79
 80 public void setCity(String city) {
 81 this.city = city;
 82 }
 83
 84 public String getState() {
 85 return state;
 86 }
 87
 88 public void setState(String state) {
 89 this.state = state;
 90 }
 91
 92 public String getZip() {
 93 return zip;
 94 }
 95
 96 public void setZip(String zip) {

M39_LIAN0182_11_SE_C39.indd 38 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.9 Opening New JSF Pages 39-39

 97 this.zip = zip;
 98 }
 99
100 private boolean isRquiredFieldsFilled() {
101 return !(lastName == null || firstName == null
102 || lastName.trim().length() == 0
103 || firstName.trim().length() == 0);
104 }
105
106 public String processSubmit() {
107 if (isRquiredFieldsFilled())
108 return "ConfirmAddress";
109 else
110 return "";
111 }
112
113 public String getRequiredFields() {
114 if (isRquiredFieldsFilled())
115 return "";
116 else
117 return "Last Name and First Name are required";
118 }
119
120 public String getInput() {
121 return "<p style=\"color:red\">You entered
"
122 + "Last Name: " + lastName + "
"
123 + "First Name: " + firstName + "
"
124 + "MI: " + mi + "
"
125 + "Telephone: " + telephone + "
"
126 + "Email: " + email + "
"
127 + "Street: " + street + "
"
128 + "City: " + city + "
"
129 + "Street: " + street + "
"
130 + "City: " + city + "
"
131 + "State: " + state + "
"
132 + "Zip: " + zip + "</p>";
133 }
134
135 /** Initialize database connection */
136 private void initializeJdbc() {
137 try {
138 // Explicitly load a MySQL driver
139 Class.forName("com.mysql.jdbc.Driver");
140 System.out.println("Driver loaded");
141
142 // Establish a connection
143 Connection conn = DriverManager.getConnection(
144 "jdbc:mysql://localhost/javabook", "scott", "tiger");
145
146 // Create a Statement
147 pstmt = conn.prepareStatement("insert into Address (lastName,"
148 + " firstName, mi, telephone, email, street, city, "
149 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
150 }
151 catch (Exception ex) {
152 System.out.println(ex);
153 }
154 }
155
156 /** Store an address to the database */
157 public String storeStudent() {

go to a new page

check required fields

get input

store address

M39_LIAN0182_11_SE_C39.indd 39 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-40 Chapter 39 JavaServer Faces

158 try {
159 pstmt.setString(1, lastName);
160 pstmt.setString(2, firstName);
161 pstmt.setString(3, mi);
162 pstmt.setString(4, telephone);
163 pstmt.setString(5, email);
164 pstmt.setString(6, street);
165 pstmt.setString(7, city);
166 pstmt.setString(8, state);
167 pstmt.setString(9, zip);
168 pstmt.executeUpdate();
169 status = firstName + " " + lastName
170 + " is now registered in the database.";
171 }
172 catch (Exception ex) {
173 status = ex.getMessage();
174 }
175
176 return "AddressStoredStatus";
177 }
178
179 public String getStatus() {
180 return status;
181 }
182 }

A session-scoped managed bean must implement the java.io.Serializable interface.
So, the AddressRegistration class is defined as a subtype of java.io.Serializable.

The action for the Register button in the AddressRegistration JSF page is process-
Submit() (line 64 in AddressRegistration.xhtml). This method checks if last name and first
name are not empty (lines 106–111 in AddressRegistrationJSFBean.java). If so, it returns a
string "ConfirmAddress", which causes the ConfirmAddress JSF page to be displayed.

The ConfirmAddress JSF page displays the data entered from the user (line 12 in Confir-
mAddress.xhtml). The getInput() method (lines 120–133 in AddressRegistrationJSFBean.
java) collects the input.

The action for the Confirm button in the ConfirmAddress JSF page is storeStudent()
(line 15 in ConfirmAddress.xhtml). This method stores the address in the database (lines
157–177 in AddressRegistrationJSFBean.java) and returns a string "AddressStoredSta-
tus", which causes the AddressStoredStatus page to be displayed. The status message is
displayed in this page (line 12 in AddressStoredStatus.xhtml).

The action for the Go Back button in the ConfirmAddress page is "AddressRegistra-
tion" (line 17 in ConfirmAddress.xhtml). This causes the AddressRegistration page to
be displayed for the user to reenter the input.

The scope of the managed bean is session (line 9 AddressRegistrationJSFBean.java) so the
multiple pages can share the same bean.

Note this program loads the database driver explicitly (line 139 AddressRegistrationJSF-
Bean.java). Sometimes, an IDE such as NetBeans is not able to find a suitable driver. Loading
a driver explicitly can avoid this problem.

39.10 Contexts and Dependency Injection
Contexts and dependency injection enables beans to be shared in multiple applications.

Contexts and dependency injection, short for CDI, allows multiple programs to share a bean.
To illustrate the need for this, consider two simple webpages and a server object named track.
One page contains a button and a message that displays the number of times the button is
clicked from the current IP address, as shown in Figure 39.25. When the button is clicked

update status

go to a new page

Point
Key

M39_LIAN0182_11_SE_C39.indd 40 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.10 Contexts and Dependency Injection 39-41

for the first time, the user’s IP address along with count value 1 is stored in a map with the
IP address as the key. When the button is clicked again, the count value for the IP address is
increased in the map. The other page simply displays the total count from each IP address, as
shown in Figure 39.26. The Track class is defined as shown in Listing 39.20.

Figure 39.25 The count is updated when the Click Me button is clicked.

Figure 39.26 The count for each client IP Address is displayed.

Listing 39.20 Track.java
 1 package jsf2demo;
 2
 3 import java.util.HashMap;
 4 import java.util.Map;
 5 import javax.enterprise.context.ApplicationScoped;
 6
 7 @ApplicationScoped
 8 public class Track {
 9 private Map<String, Integer> map = new HashMap<>();
10
11 public void add(String ipAddress) {
12 map.put(ipAddress, map.containsKey(ipAddress) ?
13 map.get(ipAddress) + 1 : 1);
14 }
15
16 public int getCount(String ipAddress) {
17 return map.containsKey(ipAddress) ? map.get(ipAddress) : 0;
18 }
19
20 public String getAllCount() {
21 return "Count summary is " + map;
22 }
23 }

A Track object uses a map to store an IP address and its count with IP address as a key
(line 9). The add method (lines 11–14) adds an IP Address to the map. If the IP address is not
in the map, a new entry is created for the IP Address with value 1. Otherwise, the value for
the IP address is incremented by 1 in the map. The getCount method (lines 16–18) returns
the count for an IP address. If the IP address is not in the map, the method returns 0. The

application scope

store counts

add or update count

return count

return all counts

M39_LIAN0182_11_SE_C39.indd 41 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-42 Chapter 39 JavaServer Faces

getAllCount method (lines 20–22) simply returns a string that describes the counts for all
IP address in the map.

We now create a page named IncreaseCount.xhtml (Listing 39.21) with a button for
displaying the number of times a button is clicked on the client, and create a page named Dis-
playCount.xhtml (Listing 39.22) for displaying the counts from all clients.

Listing 39.21 IncreaseCount.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>IncreaseCount</title>
 8 </h:head>
 9 <h:body>
10 <h:form>
11 <h:commandButton
12 action="#{increaseCount.click()}" value="Click Me"/>
13
The current count is #{increaseCount.getCount()} and your
14 IP address is #{increaseCount.getIpAddress()}.</br>
15 </h:form>
16 </h:body>
17 </html>

Listing 39.22 DisplayCount.xhtml
 1 <?xml version='1.0' encoding='UTF-8' ?>
 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 4 <html xmlns="http://www.w3.org/1999/xhtml"
 5 xmlns:h="http://xmlns.jcp.org/jsf/html">
 6 <h:head>
 7 <title>DisplayCount</title>
 8 </h:head>
 9 <h:body>
10 #{displayCount.getAllCount()}.
11 </h:body>
12 </html>

The IncreaseCount page uses the increasCount bean to process the click action (line 12),
obtain the click count (line 13), and the client’s IP address (line 14). The DisplayCount page
uses the displayCount bean to obtain the count from all clients (line 10). Both increas-
Count and displayCount need to access the same Track object. How can you create a
Track object to be used by different objects? JSF supports context dependency injection
(CDI) for injecting an object into a class using the @Inject annotation. Listing 39.23 gives
the implementation for IncreaseCount.java and Listing 39.24 for DisplayCount.java.

Listing 39.23 IncreaseCount.java
 1 package jsf2demo;
 2
 3 import javax.enterprise.context.SessionScoped;
 4 import javax.inject.Named;
 5 import javax.faces.context.FacesContext;
 6 import javax.inject.Inject;
 7 import javax.servlet.http.HttpServletRequest;
 8
 9 @Named(value = "increaseCount")

process a click
obtain count
obtain IP address

obtain all counts

M39_LIAN0182_11_SE_C39.indd 42 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39.10 Contexts and Dependency Injection 39-43

10 @SessionScoped
11 public class IncreaseCount implements java.io.Serializable {
12 @Inject private Track track;
13 private String ipAddress;
14
15 public IncreaseCount() {
16 HttpServletRequest request = (HttpServletRequest)FacesContext
17 .getCurrentInstance().getExternalContext().getRequest();
18 this.ipAddress = request.getRemoteAddr();
19 }
20
21 public void click() {
22 track.add(ipAddress);
23 }
24
25 public String getIpAddress() {
26 return ipAddress;
27 }
28
29 public int getCount() {
30 return track.getCount(ipAddress);
31 }
32 }

Listing 39.24 DisplayCount.java
 1 package jsf2demo;
 2
 3 import javax.enterprise.context.ApplicationScoped;
 4 import javax.inject.Named;
 5 import javax.inject.Inject;
 6
 7 @Named(value = "displayCount")
 8 @ApplicationScoped
 9 public class DisplayCount {
10 @Inject private Track track;
11
12 public String getAllCount() {
13 return track.getAllCount();
14 }
15 }

The @Inject annotation in line 12 of IncreaseCount.java and line 10 of DisplayCount.java
injects a Track object. This Track object is created by the Java server container. The track
data fields in both classes refer to this object.

In IncreaseCount.java, the constructor obtains the IP address of a client (lines 16 and 17)
and sets it in the data field ipAddress (line 18). The click method adds the ipAddress to
the map in the track object (line 22).

Note the scope for Track and DisplayCount is ApplicationScoped since these two
objects are created once for the entire application. However, the scope for IncreaseCount
is SessionScoped since each session has its own IP Address.

session scope

inject track

increase count
obtain client’s IP

add an IP address

count for an IP

application scope

inject track

obtain all counts

Key Terms

application scope 39-21
contexts and dependency injection

(CDI) 39-40
JavaBean 39-5

request scope 39-21
scope 39-21
session scope 39-21
view scope 39-21

M39_LIAN0182_11_SE_C39.indd 43 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-44 Chapter 39 JavaServer Faces

ChapTer summary

1. JSF enables you to completely separate Java code from HTML.

2. A facelet is an XHTML page that mixes JSF tags with XHTML tags.

3. JSF applications are developed using the Model-View-Controller (MVC) architecture,
which separates the application’s data (contained in the model) from the graphical pres-
entation (the view).

4. The controller is the JSF framework that is responsible for coordinating interactions
between view and the model.

5. In JSF, the facelets are the view for presenting data. Data are obtained from Java objects.
Objects are defined using Java classes.

6. In JSF, the objects that are accessed from a facelet are JavaBeans objects.

7. The JSF expression can either use the property name or invoke the method to obtain the
current time.

8. JSF provides many elements for displaying GUI components. The tags with the h prefix are
in the JSF HTML Tag library. The tags with the f prefix are in the JSF Core Tag library.

9. You can specify the JavaBeans objects at the application scope, session scope, view
scope, or request scope.

10. The view scope keeps the bean alive as long as you stay on the view. The view scope is
between session and request scopes.

11. JSF provides several convenient and powerful ways for input validation. You can use the
standard validator tags in the JSF Core Tag Library or create custom validators.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

 *39.1 (Factorial table in JSF) Write a JSF page that displays a factorial page as shown in
Figure 39.27. Display the table in an h:outputText component. Set its escape
property to false to display it as HTML contents.

 *39.2 (Multiplication table) Write a JSF page that displays a multiplication table as shown
in Figure 39.28.

 *39.3 (Calculate tax) Write a JSF page to let the user enter taxable income and filing
status, as shown in Figure 39.29a. Clicking the Compute Tax button computes and
displays the tax, as shown in Figure 39.29b. Use the computeTax method intro-
duced in Listing 3.5, ComputeTax.java, to compute tax.

 *39.4 (Calculate loan) Write a JSF page that lets the user enter loan amount, interest rate,
and number of years, as shown in Figure 39.30a. Click the Compute Loan Payment
button to compute and display the monthly and total loan payments, as shown in
Figure 39.30b. Use the Loan class given in Listing 10.2, Loan.java, to compute the
monthly and total payments.

M39_LIAN0182_11_SE_C39.indd 44 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 39-45

Figure 39.27 The JSF page displays factorials for the numbers from 0 to 10 in a table.

Figure 39.28 The JSF page displays the multiplication table.

 *39.5 (Addition quiz) Write a JSF program that generates addition quizzes randomly, as
shown in Figure 39.31a. After the user answers all questions, it displays the result,
as shown in Figure 39.31b.

 *39.6 (Large factorial) Rewrite Exercise 39.1 to handle large factorial as shown in
 Figure 39.32. Use the BigInteger class introduced in Section 10.9.

 *39.7 (Guess birthday) Listing 4.3, GuessBirthday.java, gives a program for guessing a
birthday. Write a JSF program that displays five sets of numbers, as shown in Figure
39.33a. After the user checks the appropriate boxes and clicks the Guess Birthday
button, the program displays the birthday, as shown in Figure 39.33b.

M39_LIAN0182_11_SE_C39.indd 45 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-46 Chapter 39 JavaServer Faces

Figure 39.29 The JSF page computes the tax.

(a)

(b)

Figure 39.30 The JSF page computes the loan payment.

(a)

(b)

M39_LIAN0182_11_SE_C39.indd 46 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 39-47

Figure 39.31 The program displays addition questions in (a) and answers in (b).

(a)

(b)

 *39.8 (Guess capitals) Write a JSF that prompts the user to enter a capital for a state, as
shown in Figure 39.34a. Upon receiving the user input, the program reports whether
the answer is correct, as shown in Figure 39.34b. You can click the Next button to
display another question. You can use a two-dimensional array to store the states
and capitals, as proposed in Exercise 8.37. Create a list from the array and apply the
shuffle method to reorder the list so the questions will appear in random order.

 *39.9 (Access and update a Staff table) Write a JSF program that views, inserts, and
updates staff information stored in a database, as shown in Figure 39.35. The view
button displays a record with a specified ID. The Staff table is created as follows:

create table Staff (
 id char(9) not null,
 lastName varchar(15),
 firstName varchar(15),

M39_LIAN0182_11_SE_C39.indd 47 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-48 Chapter 39 JavaServer Faces

Figure 39.32 The JSF page displays factorials for the numbers from 10 to 20 in a table.

Figure 39.33 (a) The program displays five sets of numbers for the user to check the
boxes. (b) The program displays the date.

(a)

(b)

M39_LIAN0182_11_SE_C39.indd 48 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 39-49

Figure 39.34 (a) The program displays a question. (b) The program displays the answer to the
question.

(a)

(b)

Figure 39.35 The webpage lets you view, insert, and update staff information.

M39_LIAN0182_11_SE_C39.indd 49 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-50 Chapter 39 JavaServer Faces

Figure 39.36 This JSF application displays four random cards.

 mi char(1),
 address varchar(20),
 city varchar(20),
 state char(2),
 telephone char(10),
 email varchar(40),
 primary key (id)
);

 *39.10 (Random cards) Write a JSF that displays four random cards from a deck of 52
cards, as shown in Figure 39.36. When the user clicks the Refresh button, four new
random cards are displayed.

 ***39.11 (Game: the 24-point card game) Rewrite Exercise 20.13 using JSF, as shown in
Figure 39.37. Upon clicking the Refresh button, the program displays four ran-
dom cards and displays an expression if a 24-point solution exists. Otherwise, it
displays “No solution”.

Figure 39.37 The JSF application solves a 24-point card game.

M39_LIAN0182_11_SE_C39.indd 50 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 39-51

 ***39.12 (Game: the 24-point card game) Rewrite Exercise 20.17 using JSF, as shown in
Figure 39.38. The program lets the user enter four card values and finds a solu-
tion upon clicking the Find a Solution button.

 *39.13 (Day of week) Write a program that displays the day of the week for a given day,
month, and year, as shown in Figure 39.39. The program lets the user select a day,
month, and year, and click the Get Day of Week button to display the day of week.
The Time field displays “Future” if it is a future day or “Past” otherwise. Use the
 Zeller’s congruence to find the day of the week (see Programming Exercise 3.21).

Figure 39.38 The user enters four numbers and the program finds a solution.

Figure 39.39 The user enters a day, month, and year and the program displays the day of
the week.

M39_LIAN0182_11_SE_C39.indd 51 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

39-52 Chapter 39 JavaServer Faces

 *39.14 (Display total count) Revise Listing 39.22, DisplayCount.xhtml to display the total
count of the button clicks form all clients and display the client’s IP address and
counts in increasing order of the counts, as shown in Figure 39.40.

Figure 39.40 The total counts and individual client counts are displayed.

M39_LIAN0182_11_SE_C39.indd 52 5/26/17 7:21 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To explain how RMI works (§40.2).

■■ To describe the process of developing RMI applications (§40.3).

■■ To distinguish between RMI and socket-level programming (§40.4).

■■ To develop three-tier applications using RMI (§40.5).

■■ To use callbacks to develop interactive applications (§40.6).

Remote Method
Invocation

CHAPTER

40

M40_LIAN0182_11_SE_C40.indd 1 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-2 Chapter 40 Remote Method Invocation

40.1 Introduction
Remote Method Invocation is a high-level Java API for Java network programming.

Remote Method Invocation (RMI) provides a framework for building distributed Java systems.
Using RMI, a Java object on one system can invoke a method in an object on another system
on the network. A distributed Java system can be defined as a collection of cooperative dis-
tributed objects on the network. In this chapter, you will learn how to use RMI to create useful
distributed applications.

40.2 RMI Basics
RMI enables you to access a remote object and invoke its methods.

RMI is the Java Distributed Object Model for facilitating communications among distributed
objects. RMI is a high-level API built on top of sockets. Socket-level programming allows
you to pass data through sockets among computers. RMI enables you also to invoke methods
in a remote object. Remote objects can be manipulated as if they were residing on the local
host. The transmission of data among different machines is handled by the JVM transparently.

In many ways, RMI is an evolution of the client/server architecture. A client is a compo-
nent that issues requests for services, and a server is a component that delivers the requested
services. Like the client/server architecture, RMI maintains the notion of clients and servers,
but the RMI approach is more flexible.

■■ An RMI component can act as both a client and a server, depending on the scenario
in question.

■■ An RMI system can pass functionality from a server to a client, and vice versa. Typi-
cally a client/server system only passes data back and forth between server and client.

40.2.1 How Does RMI Work?
All the objects you have used before this chapter are called local objects. Local objects are
accessible only within the local host. Objects that are accessible from a remote host are called
remote objects. For an object to be invoked remotely, it must be defined in a Java interface
accessible to both the server and the client. Furthermore, the interface must extend the java.
rmi.Remote interface. Like the java.io.Serializable interface, java.rmi.Remote
is a marker interface that contains no constants or methods. It is used only to identify remote
objects.

The key components of the RMI architecture are listed below (see Figure 40.1):

■■ Server object interface: A subinterface of java.rmi.Remote that defines the
methods for the server object.

■■ Server class: A class that implements the remote object interface.

■■ Server object: An instance of the server class.

■■ RMI registry: A utility that registers remote objects and provides naming services
for locating objects.

■■ Client program: A program that invokes the methods in the remote server object.

■■ Server stub: An object that resides on the client host and serves as a surrogate for
the remote server object.

■■ Server skeleton: An object that resides on the server host and communicates with
the stub and the actual server object.

Point
Key

Point
Key

M40_LIAN0182_11_SE_C40.indd 2 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.2 RMI Basics 40-3

RMI works as follows:

1. A server object is registered with the RMI registry.

2. A client looks through the RMI registry for the remote object.

3. Once the remote object is located, its stub is returned in the client.

4. The remote object can be used in the same way as a local object. Communication between
the client and the server is handled through the stub and the skeleton.

The implementation of the RMI architecture is complex, but the good news is that RMI pro-
vides a mechanism that liberates you from writing the tedious code for handling parameter
passing and invoking remote methods. The basic idea is to use two helper classes known as
the stub and the skeleton for handling communications between client and server.

The stub and the skeleton are automatically generated. The stub resides on the client
machine. It contains all the reference information the client needs to know about the server
object. When a client invokes a method on a server object, it actually invokes a method that is
encapsulated in the stub. The stub is responsible for sending parameters to the server and for
receiving the result from the server and returning it to the client.

The skeleton communicates with the stub on the server side. The skeleton receives param-
eters from the client, passes them to the server for execution, and returns the result to the stub.

40.2.2 Passing Parameters
When a client invokes a remote method with parameters, passing the parameters is handled
by the stub and the skeleton. Obviously, invoking methods in a remote object on a server is
very different from invoking methods in a local object on a client, since the remote object is
in a different address space on a separate machine. Let us consider three types of parameters:

■■ Primitive data types, such as char, int, double, or boolean, are passed by value
like a local call.

■■ Local object types, such as java.lang.String, are also passed by value, but this
is completely different from passing an object parameter in a local call. In a local call,
an object parameter’s reference is passed, which corresponds to the memory address
of the object. In a remote call, there is no way to pass the object reference, because the
address on one machine is meaningless to a different JVM. Any object can be used as

Figure 40.1 Java RMI uses a registry to provide naming services for remote objects, and
uses the stub and the skeleton to facilitate communications between client and server.

Client Host

Server
StubClient

Program

RMI Registry Host

RMI
Registry

Server Host

Server
Skeleton Server

Object

(1) Register Server Object

(2) Look for Server Object

(3) Return
Server Stub

(4) Data
Communication

Server Object
Interface

Server Object
Interface

M40_LIAN0182_11_SE_C40.indd 3 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-4 Chapter 40 Remote Method Invocation

a parameter in a remote call as long as it is serializable. The stub serializes the object
parameter and sends it in a stream across the network. The skeleton deserializes the
stream into an object.

■■ Remote object types are passed differently from local objects. When a client invokes
a remote method with a parameter of a remote object type, the stub of the remote
object is passed. The server receives the stub and manipulates the parameter through
it. Passing remote objects will be discussed in Section 40.6, RMI Callbacks.

40.2.3 RMI Registry
How does a client locate the remote object? The RMI registry provides the registry services
for the server to register the object and for the client to locate the object.

You can use several overloaded static getRegistry() methods in the LocateRegistry
class to return a reference to a Registry, as shown in Figure 40.2. Once a Registry is
obtained, you can bind an object with a unique name in the registry using the bind or rebind
method, or locate an object using the lookup method, as shown in Figure 40.3.

java.rmi.registry.LocateRegistry

+getRegistry(): Registry

+getRegistry(port: int): Registry

+getRegistry(host: String): Registry

+getRegistry(host:String, port: int): Registry

Returns a reference to the remote object Registry for the local
host on the default registry port of 1099.

Returns a reference to the remote object Registry for the local
host on the specified port.

Returns a reference to the remote object Registry on the specified
host on the default registry port of 1099.

Returns a reference to the remote object Registry on the specified
host and port.

Figure 40.2 The LocateRegistry class provides the methods for obtaining a registry on a host.

java.rmi.registry.Registry

+bind(name: String, obj: Remote): void

+rebind(name: String, obj: Remote): void

+unbind(name: String): void

+list(name: String): String[]

+lookup(name: String): Remote

Binds the specified name with the remote object.

Binds the specified name with the remote object. Any
 existing binding for the name is replaced.

Destroys the binding for the specified name that is
 associated with a remote object.

Returns an array of the names bound in the registry.

Returns a reference, a stub, for the remote object associated
with the specified name.

Figure 40.3 The Registry class provides the methods for binding and obtaining references to remote objects in a
remote object registry.

40.3 Developing RMI Applications
An RMI application consists of defining server object interface, defining a server
object interface implementation class, creating and registering a server object, and
developing a client program.

Now that you have a basic understanding of RMI, you are ready to write simple RMI applica-
tions. The steps in developing an RMI application are shown in Figure 40.4 and listed below.

Point
Key

M40_LIAN0182_11_SE_C40.indd 4 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.3 Developing RMI Applications 40-5

1. Define a server object interface that serves as the contract between the server and its
clients, as shown in the following outline:

public interface ServerInterface extends Remote {
 public void service1(...) throws RemoteException;
 // Other methods
}

A server object interface must extend the java.rmi.Remote interface.

2. Define a class that implements the server object interface, as shown in the following
outline:

public class ServerInterfaceImpl extends UnicastRemoteObject
 implements ServerInterface {
 public void service1(...) throws RemoteException {
 // Implement it
 }
 // Implement other methods
}

The server implementation class must extend the java.rmi.server.UnicastRemote
Object class. The UnicastRemoteObject class provides support for point-to-point
active object references using TCP streams.

3. Create a server object from the server implementation class and register it with an RMI
registry:

ServerInterface server = new ServerInterfaceImpl(...);
Registry registry = LocateRegistry.getRegistry();
registry.rebind("RemoteObjectName", server);

4. Develop a client that locates a remote object and invokes its methods, as shown in the
following outline:

Registry registry = LocateRegistry.getRegistry(host);
ServerInterface server = (ServerInterfaceImpl)
 registry.lookup("RemoteObjectName");
server.service1(...);

The example that follows demonstrates the development of an RMI application through
these steps.

40.3.1 Example: Retrieving Student Scores from an RMI Server
This example creates a client that retrieves student scores from an RMI server. The client,
shown in Figure 40.5, displays the score for the specified name.

1. Create a server interface named StudentServerInterface in Listing 40.1. The
interface tells the client how to invoke the server’s findScore method to retrieve a
student score.

Figure 40.4 The steps in developing an RMI application.

4 2

1 De�ne Server
Object Interface

Develop Client
Program

De�ne Server
Implementation Class

3 Create and Register
Server Object

M40_LIAN0182_11_SE_C40.indd 5 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-6 Chapter 40 Remote Method Invocation

Listing 40.1 StudentServerInterface.java
 1 import java.rmi.*;
 2
 3 public interface StudentServerInterface extends Remote {
 4 /**
 5 * Return the score for the specified name
 6 * @param name the student name
 7 * @return a double score or –1 if the student is not found
 8 */
 9 public double findScore(String name) throws RemoteException;
10 }

Any object that can be used remotely must be defined in an interface that extends the
java.rmi.Remote interface (line 3). StudentServerInterface, extending Remote,
defines the findScore method that can be remotely invoked by a client to find a stu-
dent’s score. Each method in this interface must declare that it may throw a java.rmi.
RemoteException (line 9). Therefore, your client code that invokes this method must
be prepared to catch this exception in a try-catch block.

2. Create a server implementation named StudentServerInterfaceImpl (Listing 40.2)
that implements StudentServerInterface. The findScore method returns the
score for a specified student. It returns -1 if the score is not found.

Listing 40.2 StudentServerInterfaceImpl.java
 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.util.*;
 4
 5 public class StudentServerInterfaceImpl
 6 extends UnicastRemoteObject
 7 implements StudentServerInterface {
 8 // Stores scores in a map indexed by name
 9 private HashMap<String, Double> scores =
10 new HashMap<String, Double>();
11
12 public StudentServerInterfaceImpl() throws RemoteException {
13 initializeStudent();
14 }
15
16 /** Initialize student information */
17 protected void initializeStudent() {
18 scores.put("John", new Double(90.5));
19 scores.put("Michael", new Double(100));
20 scores.put("Michelle", new Double(98.5));
21 }
22
23 /** Implement the findScore method from the
24 * Student interface */
25 public double findScore(String name) throws RemoteException {
26 Double d = (Double)scores.get(name);

Figure 40.5 You can get the score by entering a student name and clicking the Get Score button.

M40_LIAN0182_11_SE_C40.indd 6 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.3 Developing RMI Applications 40-7

27
28 if (d == null) {
29 System.out.println("Student " + name + " is not found ");
30 return –1;
31 }
32 else {
33 System.out.println("Student " + name + "\'s score is "
34 + d.doubleValue());
35 return d.doubleValue();
36 }
37 }
38 }

The StudentServerInterfaceImpl class implements StudentServerInterface.
This class must also extend the java.rmi.server.RemoteServer class or its
subclass. RemoteServer is an abstract class that defines the methods needed
to create and export remote objects. Often its subclass java.rmi.server.
UnicastRemoteObject is used (line 6). This subclass implements all the abstract
methods defined in RemoteServer.

StudentServerInterfaceImpl implements the findScore method (lines 25–37)
defined in StudentServerInterface. For simplicity, three students, John, Michael,
and Michelle, and their corresponding scores are stored in an instance of java.util.
HashMap named scores. HashMap is a concrete class of the Map interface in the Java
Collections Framework, which makes it possible to search and retrieve a value using a
key. Both values and keys are of Object type. The findScore method returns the score
if the name is in the hash map, and returns -1 if the name is not found.

3. Create a server object from the server implementation and register it with the RMI server
(see Listing 40.3).

Listing 40.3 RegisterWithRMIServer.java
 1 import java.rmi.registry.*;
 2
 3 public class RegisterWithRMIServer {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 try {
 7 StudentServerInterface obj =
 8 new StudentServerInterfaceImpl();
 9 Registry registry = LocateRegistry.getRegistry();
10 registry.rebind("StudentServerInterfaceImpl", obj);
11 System.out.println("Student server " + obj + " registered");
12 }
13 catch (Exception ex) {
14 ex.printStackTrace();
15 }
16 }
17 }

RegisterWithRMIServer contains a main method, which is responsible for starting
the server. It performs the following tasks: (1) create a server object (line 8); (2) obtain a
reference to the RMI registry (line 9), and (3) register the object in the registry (line 10).

4. Create a client named StudentServerInterfaceClient in Listing 40.4. The client
locates the server object from the RMI registry and uses it to find the scores.

Listing 40.4 StudentServerInterfaceClient.java
 1 import javafx.application.Application;
 2 import javafx.scene.Scene;

M40_LIAN0182_11_SE_C40.indd 7 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-8 Chapter 40 Remote Method Invocation

 3 import javafx.scene.control.Button;
 4 import javafx.scene.control.Label;
 5 import javafx.scene.control.TextField;
 6 import javafx.scene.layout.GridPane;
 7 import javafx.stage.Stage;
 8 import java.rmi.registry.LocateRegistry;
 9 import java.rmi.registry.Registry;
10
11 public class StudentServerInterfaceClient extends Application {
12 // Declare a Student instance
13 private StudentServerInterface student;
14
15 private Button btGetScore = new Button("Get Score");
16 private TextField tfName = new TextField();
17 private TextField tfScore = new TextField();
18
19 public void start(Stage primaryStage) {
20 GridPane gridPane = new GridPane();
21 gridPane.setHgap(5);
22 gridPane.add(new Label("Name"), 0, 0);
23 gridPane.add(new Label("Score"), 0, 1);
24 gridPane.add(tfName, 1, 0);
25 gridPane.add(tfScore, 1, 1);
26 gridPane.add(btGetScore, 1, 2);
27
28 // Create a scene and place the pane in the stage
29 Scene scene = new Scene(gridPane, 250, 250);
30 primaryStage.setTitle("StudentServerInterfaceClient");
31 primaryStage.setScene(scene); // Place the scene in the stage
32 primaryStage.show(); // Display the stage
33
34 initializeRMI();
35 btGetScore.setOnAction(e − > getScore());
36 }
37
38 private void getScore() {
39 try {
40 // Get student score
41 double score = student.findScore(tfName.getText().trim());
42
43 // Display the result
44 if (score < 0)
45 tfScore.setText("Not found");
46 else
47 tfScore.setText(new Double(score).toString());
48 }
49 catch(Exception ex) {
50 ex.printStackTrace();
51 }
52 }
53
54 /** Initialize RMI */
55 protected void initializeRMI() {
56 String host = "";
57
58 try {
59 Registry registry = LocateRegistry.getRegistry(host);
60 student = (StudentServerInterface)
61 registry.lookup("StudentServerInterfaceImpl");
62 System.out.println("Server object " + student + " found");
63 }
64 catch(Exception ex) {

M40_LIAN0182_11_SE_C40.indd 8 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.3 Developing RMI Applications 40-9

65 System.out.println(ex);
66 }
67 }
68
69 /**
70 * The main method is only needed for the IDE with limited
71 * JavaFX support. Not needed for running from the command line.
72 */
73 public static void main(String[] args) {
74 launch(args);
75 }
76 }

StudentServerInterfaceClient invokes the findScore method on the server to
find the score for a specified student. The key method in StudentServerInterface-
Client is the initializeRMI method (lines 55–67), which is responsible for locating
the server stub.

The lookup(String name) method (line 61) returns the remote object with the speci-
fied name. Once a remote object is found, it can be used just like a local object. The stub
and the skeleton are used behind the scenes to make the remote method invocation work.

5. Follow the steps below to run this example.

 5.1. Start the RMI registry by typing “start rmiregistry” at a DOS prompt from the book
directory. By default, the port number 1099 is used by rmiregistry. To use a different
port number, simply type the command “start rmiregistry portnumber” at a DOS
prompt.

 5.2. Start the server RegisterWithRMIServer using the following command at C:\
book directory:

C:\ book>java RegisterWithRMIServer

 5.3. Run the client StudentServerInterfaceClient as an application. A sample run
of the application is shown in Figure 40.5(b).

Note:
You must start rmiregistry from the directory where you will run the RMI server, as shown
in Figure 40.6. Otherwise, you will receive the error ClassNotFoundException on
StudentServerInterfaceImpl_Stub.

Figure 40.6 To run an RMI program, first start the rmiregistry, then register the server object with the registry. The
 client locates it from the registry.

RMI registry

Start RMI registry

Start RMI server

Run RMI client

M40_LIAN0182_11_SE_C40.indd 9 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-10 Chapter 40 Remote Method Invocation

Note:
Server, registry, and client can be on three different machines. If you run the client and
the server on separate machines, you need to place StudentServerInterface on
both machines.

Caution:
If you modify the remote object implementation class, you need to restart the server
class to reload the object to the RMI registry. In some old versions of rmiregistry, you
may have to restart rmiregistry.

 40.3.1 How do you define an interface for a remote object?

 40.3.2 Describe the roles of the stub and the skeleton.

 40.3.3 What is java.rmi.Remote? How do you define a server class?

 40.3.4 What is an RMI registry for? How do you create an RMI registry?

 40.3.5 What is the command to start an RMI registry?

 40.3.6 How do you register a remote object with the RMI registry?

 40.3.7 What is the command to start a custom RMI server?

 40.3.8 How does a client locate a remote object stub through an RMI registry?

 40.3.9 How do you obtain a registry? How do you register a remote object? How do you
locate remote object?

40.4 RMI vs. Socket-Level Programming
RMI is a high-level network programming and socket-level network programming is
low-low-level.

RMI enables you to program at a higher level of abstraction. It hides the details of socket
server, socket, connection, and sending or receiving data. It even implements a multithreading
server under the hood, whereas with socket-level programming, you have to explicitly imple-
ment threads for handling multiple clients.

RMI applications are scalable and easy to maintain. You can change the RMI server or
move it to another machine without modifying the client program except for resetting the URL
to locate the server. (To avoid resetting the URL, you can modify the client to pass the URL
as a command-line parameter.) In socket-level programming, a client operation to send data
requires a server operation to read it. The implementation of client and server at the socket
level is tightly synchronized.

RMI clients can directly invoke the server method, whereas socket-level programming
is limited to passing values. Socket-level programming is very primitive. Avoid using it to
develop client/server applications. As an analogy, socket-level programming is similar to
 programming in assembly language, whereas RMI programming is like programming in a
high-level language.

 40.10 What are the advantages of RMI over socket-level programming?

40.5 Developing Three-Tier Applications Using RMI
RMI can be used in the middle between a client and a database to develop scalable
and flexible business applications.

Three-tier applications have gained considerable attention in recent years, largely because of
the demand for more scalable and load-balanced systems to replace traditional two-tier client/
server database systems. A centralized database system does not just handle data access, but
it also processes the business rules on data. Thus, a centralized database is usually heavily

Point
Check

Point
Key

Point
Check

Point
Key

M40_LIAN0182_11_SE_C40.indd 10 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.5 Developing Three-Tier Applications Using RMI 40-11

loaded, because it requires extensive data manipulation and processing. In some situations,
data processing is handled by the client and business rules are stored on the client side. It is
preferable to use a middle tier as a buffer between client and database. The middle tier can be
used to apply business logic and rules, and to process data to reduce the load on the database.

A three-tier architecture does more than just reduce the processing load on the server. It also
provides access to multiple network sites. This is especially useful to Java clients that need to
access multiple databases on different servers, since the server may change.

To demonstrate, let us rewrite the example in Section 40.3.1, Example: Retrieving Student
Scores from an RMI Server, to find scores stored in a database rather than a hash map. In addi-
tion, the system is capable of blocking a client from accessing a student who has not given the
university permission to publish his/her score. An RMI component is developed to serve as a
middle tier between client and database; it sends a search request to the database, processes
the result, and returns an appropriate value to the client.

For simplicity, this example reuses the StudentServerInterface interface and Stu-
dentServerInterfaceClient class from Section 40.3.1 with no modifications. All you
have to do is to provide a new implementation for the server interface and create a program to
register the server with the RMI. Here are the steps to complete the program:

1. Store the scores in a database table named Score that contains three columns: name,
score, and permission. The permission value is 1 or 0, which indicates whether the
student has given the university permission to release his/her grade. The following is the
statement to create the table and insert three records:

create table Scores (name varchar(20),
 score number, permission number);

insert into Scores values ('John', 90.5, 1);
insert into Scores values ('Michael', 100, 1);
insert into Scores values ('Michelle', 100, 0);

2. Create a new server implementation named Student3TierImpl in Listing 40.5. The
server retrieves a record from the Scores table, processes the retrieved information, and
sends the result back to the client.

Listing 40.5 Student3TierImpl.java
 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.sql.*;
 4
 5 public class Student3TierImpl extends UnicastRemoteObject
 6 implements StudentServerInterface {
 7 // Use prepared statement for querying DB
 8 private PreparedStatement pstmt;
 9
10 /** Constructs Student3TierImpl object and exports it on
11 * default port.
12 */
13 public Student3TierImpl() throws RemoteException {
14 initializeDB();
15 }
16
17 /** Constructs Student3TierImpl object and exports it on
18 * specified port.
19 * @param port The port for exporting
20 */
21 public Student3TierImpl(int port) throws RemoteException {
22 super(port);

M40_LIAN0182_11_SE_C40.indd 11 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-12 Chapter 40 Remote Method Invocation

23 initializeDB();
24 }
25
26 /** Load JDBC driver, establish connection and
27 * create statement */
28 protected void initializeDB() {
29 try {
30 // Load the JDBC driver
31 // Class.forName("oracle.jdbc.driver.OracleDriver");
32 Class.forName("com.mysql.jdbc.Driver ");
33
34 System.out.println("Driver registered");
35
36 // Establish connection
37 /*Connection conn = DriverManager.getConnection
38 ("jdbc:oracle:thin:@drake.armstrong.edu:1521:orcl",
39 "scott", "tiger"); */
40 Connection conn = DriverManager.getConnection
41 ("jdbc:mysql://localhost/javabook", "scott", "tiger");
42 System.out.println("Database connected");
43
44 // Create a prepared statement for querying DB
45 pstmt = conn.prepareStatement(
46 "select * from Scores where name = ?");
47 }
48 catch (Exception ex) {
49 System.out.println(ex);
50 }
51 }
52
53 /** Return the score for specified the name
54 * Return −1 if score is not found.
55 */
56 public double findScore(String name) throws RemoteException {
57 double score = −1;
58 try {
59 // Set the specified name in the prepared statement
60 pstmt.setString(1, name);
61
62 // Execute the prepared statement
63 ResultSet rs = pstmt.executeQuery();
64
65 // Retrieve the score
66 if (rs.next()) {
67 if (rs.getBoolean(3))
68 score = rs.getDouble(2);
69 }
70 }
71 catch (SQLException ex) {
72 System.out.println(ex);
73 }
74
75 return score;
76 }
77 }

Student3TierImpl is similar to Listing 40.2, StudentServerInterfaceImpl.java in
 Section 40.3.1 except that the Student3TierImpl class finds the score from a JDBC
data source instead from a hash map.

M40_LIAN0182_11_SE_C40.indd 12 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.6 RMI Callbacks 40-13

The table named Scores consists of three columns, name, score, and permission,
where the latter indicates whether the student has given permission to show his/her score.
Since SQL does not support a boolean type, permission is defined as a number whose
value of 1 indicates true and of 0 indicates false.

 The initializeDB() method (lines 28–51) establishes connections with the data-
base and creates a prepared statement for processing the query.

 The findScore method (lines 56–76) sets the name in the prepared statement,
 executes the statement, processes the result, and returns the score for a student whose
permission is true.

3. Write a main method in the class RegisterStudent3TierServer (see Listing 40.6)
that registers the server object using StudentServerInterfaceImpl, the same name as in
 Listing 40.2, so you can use StudentServerInterfaceClient, created in Section
40.3.1, to test the server.

Listing 40.6 RegisterStudent3TierServer.java
 1 import java.rmi.registry.*;
 2
 3 public class RegisterStudent3TierServer {
 4 public static void main(String[] args) {
 5 try {
 6 StudentServerInterface obj = new Student3TierImpl();
 7 Registry registry = LocateRegistry.getRegistry();
 8 registry.rebind("StudentServerInterfaceImpl", obj);
 9 System.out.println("Student server " + obj + " registered");
10 } catch (Exception ex) {
11 ex.printStackTrace();
12 }
13 }
14 }

4. Follow the steps below to run this example.

 4.1. Start RMI registry by typing “start rmiregistry” at a DOS prompt from the book
directory.

 4.2. Start the server RegisterStudent3TierServer using the following command
at the C:\ book directory:

C:\ book>java RegisterStudent3TierServer

 4.3. Run the client StudentServerInterfaceClient. A sample run is shown in
 Figure 40.6.

 40.5.1 Describe how parameters are passed in RMI.

40.6 RMI Callbacks
RMI callbacks enable the server to invoke the methods on a client.

In a traditional client/server system, a client sends a request to a server, and the server pro-
cesses the request and returns the result to the client. The server cannot invoke the methods on
a client. One important benefit of RMI is that it supports callbacks, which enable the server
to invoke methods on the client. With the RMI callback feature, you can develop interactive
distributed applications.

Point
Check

Point
Key

M40_LIAN0182_11_SE_C40.indd 13 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-14 Chapter 40 Remote Method Invocation

In Section 33.6, Case Studies: Distributed TicTacToe Games, you developed a distributed
 TicTacToe game using stream socket programming. The example that follows demonstrates
the use of the RMI callback feature to develop an interactive TicTacToe game.

All the examples you have seen so far in this chapter have simple behaviors that are easy
to model with classes. The behavior of the TicTacToe game is somewhat complex. To create
the classes to model the game, you need to study and understand it and distribute the process
appropriately between client and server.

Clearly the client should be responsible for handling user interactions, and the server
should coordinate with the client. Specifically, the client should register with the server, and
the server can take two and only two players. Once a client makes a move, it should notify the
server; the server then notifies the move to the other player. The server should determine
the status of the game—that is, whether it has been won or drawn—and notify the players.
The server should also coordinate the turns—that is, which client has the turn at a given time.
The ideal approach for notifying a player is to invoke a method in the client that sets appropri-
ate properties in the client or sends messages to a player. Figure 40.7 illustrates the relation-
ship between clients and server.

Figure 40.7 The server coordinates the activities with the clients.

Client 1:
A client makes two kinds of calls:
1. Request to play the game.
2. Notify the server of the move.

Client 2:
A client makes two kinds of calls:
1. Request to play the game.
2. Notify the server of the move.

Server:
The server makes three kinds of calls:
1. Notify a client of the other
 client’s move.
2. Notify the game status.
3. Coordinate the turn.

All the calls a client makes can be encapsulated in one remote interface named TicTacToe
(Listing 40.7), and all the calls the server invokes can be defined in another interface named
CallBack (Listing 40.8). These two interfaces are defined as follows:

Listing 40.7 TicTacToeInterface.java
 1 import java.rmi.*;
 2
 3 public interface TicTacToeInterface extends Remote {
 4 /**
 5 * Connect to the TicTacToe server and return the token.
 6 * If the returned token is ' ', the client is not connected to
 7 * the server
 8 */
 9 public char connect(CallBack client) throws RemoteException;
10
11 /** A client invokes this method to notify the server of its move*/
12 public void myMove(int row, int column, char token)
13 throws RemoteException;
14 }

M40_LIAN0182_11_SE_C40.indd 14 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.6 RMI Callbacks 40-15

Listing 40.8 CallBack.java
 1 import java.rmi.*;
 2
 3 public interface CallBack extends Remote {
 4 /** The server notifies the client for taking a turn */
 5 public void takeTurn(boolean turn) throws RemoteException;
 6
 7 /** The server sends a message to be displayed by the client */
 8 public void notify(java.lang.String message)
 9 throws RemoteException;
10
11 /** The server notifies a client of the other player's move */
12 public void mark(int row, int column, char token)
13 throws RemoteException;
14 }

What does a client need to do? The client interacts with the player. Assume all the cells are
initially empty, and the first player takes the X token and the second player the O token. To
mark a cell, the player points the mouse to the cell and clicks it. If the cell is empty, the token
(X or O) is displayed. If the cell is already filled, the player’s action is ignored.

From the preceding description, it is obvious that a cell is a GUI object that handles mouse-
click events and displays tokens. The candidate for such an object could be a button or a panel.
Panels are more flexible than buttons. The token (X or O) can be drawn on a panel in any size,
but it can be displayed only as a label on a button.

Let Cell be a subclass of JPanel. You can declare a 3 * 3 grid to be an array Cell[]
[] cell = new Cell[3][3] for modeling the game. How do you know the state of a cell
(marked or not)? You can use a property named marked of the boolean type in the Cell
class. How do you know whether the player has a turn? You can use a property named myTurn
of boolean. This property (initially false) can be set by the server through a callback.

The Cell class is responsible for drawing the token when an empty cell is clicked, so you
need to write the code for listening to the MouseEvent and for painting the shape for tokens
X and O. To determine which shape to draw, introduce a variable named marker of the char
type. Since this variable is shared by all the cells in a client, it is preferable to declare it in
the client and to declare the Cell class as an inner class of the client so this variable will be
accessible to all the cells.

Now let us turn our attention to the server side. What does the server need to do? The
server needs to implement TicTacToeInterface and notify the clients of the game status.
The server has to record the moves in the cells and check the status every time a player
makes a move. The status information can be kept in a 3 * 3 array of char. You can imple-
ment a method named isFull() to check whether the board is full and a method named
isWon(token) to check whether a specific player has won.

Once a client is connected to the server, the server notifies the client which token to use—
that is, X for the first client and O for the second. Once a client notifies the server of its move,
the server checks the game status and notifies the clients.

Now the most critical question is how the server notifies a client. You know that a client
invokes a server method by creating a server stub on the client side. A server cannot directly
invoke a client, because the client is not declared as a remote object. The CallBack interface
was created to facilitate the server’s callback to the client. In the implementation of CallBack,
an instance of the client is passed as a parameter in the constructor of CallBack. The client
creates an instance of CallBack and passes its stub to the server, using a remote method
named connect() defined in the server. The server then invokes the client’s method through
a CallBack instance. The triangular relationship of client, CallBack implementation, and
server is shown in Figure 40.8.

M40_LIAN0182_11_SE_C40.indd 15 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-16 Chapter 40 Remote Method Invocation

Here are the steps to complete the example.

1. Create TicTacToeImpl.java (Listing 40.9) to implement TicTacToeInterface. Add a
main method in the program to register the server with the RMI.

Listing 40.9 TicTacToeImpl.java
 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3 import java.rmi.registry.*;
 4 import java.rmi.registry.*;
 5
 6 public class TicTacToeImpl extends UnicastRemoteObject
 7 implements TicTacToeInterface {
 8 // Declare two players, used to call players back
 9 private CallBack player1 = null;
 10 private CallBack player2 = null;
 11
 12 // board records players' moves
 13 private char[][] board = new char[3][3];
 14
 15 /** Constructs TicTacToeImpl object and
 16 exports it on default port.
 17 */
 18 public TicTacToeImpl() throws RemoteException {
 19 super();
 20 }
 21
 22 /** Constructs TicTacToeImpl object and exports it on specified
 23 * port.
 24 * @param port The port for exporting
 25 */

Figure 40.8 The server receives a CallBack stub from the client and invokes the remote
methods defined in the CallBack interface, which can invoke the methods defined in the client.

Client

An instance of
CallBackImpl
created

Client methods
invoked by the
methods in
CallBackImpl

Server

Receive a stub
of CallBack

Server invokes
remote object’s
methods

CallBackImpl

An instance of
Client created

The remote
methods in
CallBack

M40_LIAN0182_11_SE_C40.indd 16 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.6 RMI Callbacks 40-17

 26 public TicTacToeImpl(int port) throws RemoteException {
 27 super(port);
 28 }
 29
 30 /**
 31 * Connect to the TicTacToe server and return the token.
 32 * If the returned token is ' ', the client is not connected to
 33 * the server
 34 */
 35 public char connect(CallBack client) throws RemoteException {
 36 if (player1 == null) {
 37 // player1 (first player) registered
 38 player1 = client;
 39 player1.notify("Wait for a second player to join");
 40 return 'X';
 41 }
 42 else if (player2 == null) {
 43 // player2 (second player) registered
 44 player2 = client;
 45 player2.notify("Wait for the first player to move");
 46 player2.takeTurn(false);
 47 player1.notify("It is my turn (X token)");
 48 player1.takeTurn(true);
 49 return 'O';
 50 }
 51 else {
 52 // Already two players
 53 client.notify("Two players are already in the game");
 54 return ' ';
 55 }
 56 }
 57
 58 /** A client invokes this method to notify the
 59 server of its move*/
 60 public void myMove(int row, int column, char token)
 61 throws RemoteException {
 62 // Set token to the specified cell
 63 board[row][column] = token;
 64
 65 // Notify the other player of the move
 66 if (token == 'X')
 67 player2.mark(row, column, 'X');
 68 else
 69 player1.mark(row, column, 'O');
 70
 71 // Check if the player with this token wins
 72 if (isWon(token)) {
 73 if (token == 'X') {
 74 player1.notify("I won!");
 75 player2.notify("I lost!");
 76 player1.takeTurn(false);
 77 }
 78 else {
 79 player2.notify("I won!");
 80 player1.notify("I lost!");
 81 player2.takeTurn(false);
 82 }
 83 }
 84 else if (isFull()) {
 85 player1.notify("Draw!");
 86 player2.notify("Draw!");

M40_LIAN0182_11_SE_C40.indd 17 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-18 Chapter 40 Remote Method Invocation

 87 }
 88 else if (token == 'X') {
 89 player1.notify("Wait for the second player to move");
 90 player1.takeTurn(false);
 91 player2.notify("It is my turn, (O token)");
 92 player2.takeTurn(true);
 93 }
 94 else if (token == 'O') {
 95 player2.notify("Wait for the first player to move");
 96 player2.takeTurn(false);
 97 player1.notify("It is my turn, (X token)");
 98 player1.takeTurn(true);
 99 }
100 }
101
102 /** Check if a player with the specified token wins */
103 public boolean isWon(char token) {
104 for (int i = 0; i < 3; i++)
105 if ((board[i][0] == token) && (board[i][1] == token)
106 && (board[i][2] == token))
107 return true;
108
109 for (int j = 0; j < 3; j++)
110 if ((board[0][j] == token) && (board[1][j] == token)
111 && (board[2][j] == token))
112 return true;
113
114 if ((board[0][0] == token) && (board[1][1] == token)
115 && (board[2][2] == token))
116 return true;
117
118 if ((board[0][2] == token) && (board[1][1] == token)
119 && (board[2][0] == token))
120 return true;
121
122 return false;
123 }
124
125 /** Check if the board is full */
126 public boolean isFull() {
127 for (int i = 0; i < 3; i++)
128 for (int j = 0; j < 3; j++)
129 if (board[i][j] == '\u0000')
130 return false;
131
132 return true;
133 }
134
135 public static void main(String[] args) {
136 try {
137 TicTacToeInterface obj = new TicTacToeImpl();
138 Registry registry = LocateRegistry.getRegistry();
139 registry.rebind("TicTacToeImpl", obj);
140 System.out.println("Server " + obj + " registered");
141 }
142 catch (Exception ex) {
143 ex.printStackTrace();
144 }
145 }
146 }

M40_LIAN0182_11_SE_C40.indd 18 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.6 RMI Callbacks 40-19

2. Create CallBackImpl.java (Listing 40.10) to implement the CallBack interface.

Listing 40.10 CallBackImpl.java
 1 import java.rmi.*;
 2 import java.rmi.server.*;
 3
 4 public class CallBackImpl extends UnicastRemoteObject
 5 implements CallBack {
 6 // The client will be called by the server through callback
 7 private TicTacToeClientRMI thisClient;
 8
 9 /** Constructor */
10 public CallBackImpl(Object client) throws RemoteException {
11 thisClient = (TicTacToeClientRMI)client;
12 }
13
14 /** The server notifies the client for taking a turn */
15 public void takeTurn(boolean turn) throws RemoteException {
16 thisClient.setMyTurn(turn);
17 }
18
19 /** The server sends a message to be displayed by the client */
20 public void notify(String message)throws RemoteException {
21 thisClient.setMessage(message);
22 }
23
24 /** The server notifies a client of the other player's move */
25 public void mark(int row, int column, char token)
26 throws RemoteException {
27 thisClient.mark(row, column, token);
28 }
29 }

3. Create a client named TicTacToeClientRMI (Listing 40.11) for interacting with a
player and communicating with the server. Enable it to run standalone.

Listing 40.11 TicTacToeClientRMI.java
 1 import java.rmi.*;
 2
 3 import javafx.application.Application;
 4 import javafx.application.Platform;
 5 import javafx.stage.Stage;
 6 import javafx.scene.Scene;
 7 import javafx.scene.control.Label;
 8 import javafx.scene.layout.BorderPane;
 9 import javafx.scene.layout.GridPane;
 10 import javafx.scene.layout.Pane;
 11 import javafx.scene.paint.Color;
 12 import javafx.scene.shape.Line;
 13 import javafx.scene.shape.Ellipse;
 14
 15 import java.rmi.registry.Registry;
 16 import java.rmi.registry.LocateRegistry;
 17
 18 public class TicTacToeClientRMI extends Application {
 19 // marker is used to indicate the token type
 20 private char marker;
 21
 22 // myTurn indicates whether the player can move now
 23 private boolean myTurn = false;

M40_LIAN0182_11_SE_C40.indd 19 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-20 Chapter 40 Remote Method Invocation

 24
 25 // Indicate which player has a turn, initially it is the X player
 26 private char whoseTurn = 'X';
 27
 28 // Create and initialize cell
 29 private Cell[][] cell = new Cell[3][3];
 30
 31 // Create and initialize a status label
 32 private Label lblStatus = new Label("X's turn to play");
 33
 34 // ticTacToe is the game server for coordinating
 35 // with the players
 36 private TicTacToeInterface ticTacToe;
 37
 38 private Label lblIdentification = new Label();
 39
 40 @Override // Override the start method in the Application class
 41 public void start(Stage primaryStage) {
 42 // Pane to hold cell
 43 GridPane pane = new GridPane();
 44 for (int i = 0; i < 3; i++)
 45 for (int j = 0; j < 3; j++)
 46 pane.add(cell[i][j] = new Cell(i, j), j, i);
 47
 48 BorderPane borderPane = new BorderPane();
 49 borderPane.setCenter(pane);
 50 borderPane.setTop(lblStatus);
 51 borderPane.setBottom(lblIdentification);
 52
 53 // Create a scene and place it in the stage
 54 Scene scene = new Scene(borderPane, 450, 170);
 55 primaryStage.setTitle("TicTacToe"); // Set the stage title
 56 primaryStage.setScene(scene); // Place the scene in the stage
 57 primaryStage.show(); // Display the stage
 58
 59 new Thread(() −> {
 60 try {
 61 initializeRMI();
 62 }
 63 catch (Exception ex) {
 64 ex.printStackTrace();
 65 }}).start();
 66 }
 67
 68 /** Initialize RMI */
 69 protected boolean initializeRMI() throws Exception {
 70 String host = "";
 71
 72 try {
 73 Registry registry = LocateRegistry.getRegistry(host);
 74 ticTacToe = (TicTacToeInterface)
 75 registry.lookup("TicTacToeImpl");
 76 System.out.println
 77 ("Server object " + ticTacToe + " found");
 78 }
 79 catch (Exception ex) {
 80 System.out.println(ex);
 81 }
 82
 83 // Create callback for use by the
 84 // server to control the client

M40_LIAN0182_11_SE_C40.indd 20 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.6 RMI Callbacks 40-21

 85 CallBackImpl callBackControl = new CallBackImpl(this);
 86
 87 if (
 88 (marker =
 89 ticTacToe.connect((CallBack)callBackControl)) != ' ')
 90 {
 91 System.out.println("connected as " + marker + " player.");
 92 Platform.runLater(() −>
 93 lblIdentification.setText("You are player " + marker));
 94 return true;
 95 }
 96 else {
 97 System.out.println("already two players connected as ");
 98 return false;
 99 }
100 }
101
102 /** Set variable myTurn to true or false */
103 public void setMyTurn(boolean myTurn) {
104 this.myTurn = myTurn;
105 }
106
107 /** Set message on the status label */
108 public void setMessage(String message) {
109 Platform.runLater(() −> lblStatus.setText(message));
110 }
111
112 /** Mark the specified cell using the token */
113 public void mark(int row, int column, char token) {
114 cell[row][column].setToken(token);
115 }
116
117 // An inner class for a cell
118 public class Cell extends Pane {
119 // marked indicates whether the cell has been used
120 private boolean marked = false;
121
122 // row and column indicate where the cell appears on the board
123 int row, column;
124
125 // Token used for this cell
126 private char token = ' ';
127
128 public Cell(final int row, final int column) {
129 this.row = row;
130 this.column = column;
131 setStyle("-fx-border-color: black");
132 this.setPrefSize(2000, 2000);
133 this.setOnMouseClicked(e −> handleMouseClick());
134 }
135
136 /** Return token */
137 public char getToken() {
138 return token;
139 }
140
141 /** Set a new token */
142 public void setToken(char c) {
143 token = c;
144 marked = true;
145

M40_LIAN0182_11_SE_C40.indd 21 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-22 Chapter 40 Remote Method Invocation

146 if (token == 'X') {
147 Line line1 = new Line(10, 10,
148 this.getWidth() − 10, this.getHeight() − 10);
149 line1.endXProperty().bind(this.widthProperty().subtract(10));
150 line1.endYProperty().bind(this.heightProperty().subtract(10));
151 Line line2 = new Line(10, this.getHeight() − 10,
152 this.getWidth() − 10, 10);
153 line2.startYProperty().bind(
154 this.heightProperty().subtract(10));
155 line2.endXProperty().bind(this.widthProperty().subtract(10));
156
157 // Add the lines to the pane
158 Platform.runLater(() −>
159 this.getChildren().addAll(line1, line2));
160 }
161 else if (token == 'O') {
162 Ellipse ellipse = new Ellipse(this.getWidth() / 2,
163 this.getHeight() / 2, this.getWidth() / 2 − 10,
164 this.getHeight() / 2 − 10);
165 ellipse.centerXProperty().bind(
166 this.widthProperty().divide(2));
167 ellipse.centerYProperty().bind(
168 this.heightProperty().divide(2));
169 ellipse.radiusXProperty().bind(
170 this.widthProperty().divide(2).subtract(10));
171 ellipse.radiusYProperty().bind(
172 this.heightProperty().divide(2).subtract(10));
173 ellipse.setStroke(Color.BLACK);
174 ellipse.setFill(Color.WHITE);
175
176 Platform.runLater(() −>
177 getChildren().add(ellipse)); // Add the ellipse to the pane
178 }
179 }
180
181 /* Handle a mouse click event */
182 private void handleMouseClick() {
183 if (myTurn && !marked) {
184 // Mark the cell
185 setToken(marker);
186
187 // Notify the server of the move
188 try {
189 ticTacToe.myMove(row, column, marker);
190 }
191 catch (RemoteException ex) {
192 System.out.println(ex);
193 }
194 }
195 }
196 }
197
198 /**
199 * The main method is only needed for the IDE with limited
200 * JavaFX support. Not needed for running from the command line.
201 */
202 public static void main(String[] args) {
203 launch(args);
204 }
205 }

M40_LIAN0182_11_SE_C40.indd 22 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40.6 RMI Callbacks 40-23

4. Follow the steps below to run this example.

 4.1. Start RMI registry by typing “start rmiregistry” at a DOS prompt from the book
directory.

 4.2. Start the server TicTacToeImpl using the following command at the C:\ book
directory:
C:\ book>java TicTacToeImpl

 4.3. Run the client TicTacToeClientRMI. A sample run is shown in Figure 40.9.

TicTacToeInterface defines two remote methods, connect(CallBack client) and
myMove(int row, int column, char token). The connect method plays two roles:
one is to pass a CallBack stub to the server, and the other is to let the server assign a token for
the player. The myMove method notifies the server that the player has made a specific move.

The CallBack interface defines three remote methods, takeTurn(boolean turn),
notify(String message), and mark(int row, int column, char token). The
takeTurn method sets the client’s myTurn property to true or false. The notify method
displays a message on the client’s status label. The mark method marks the client’s cell with
the token at the specified location.

TicTacToeImpl is a server implementation for coordinating with the clients and managing
the game. The variables player1 and player2 are instances of CallBack, each of which
corresponds to a client, passed from a client when the client invokes the connect method. The
variable board records the moves by the two players. This information is needed to determine
the game status. When a client invokes the connect method, the server assigns a token X for
the first player and O for the second player, and accepts only two players. You can modify the
program to accept additional clients as observers. (See Exercise 40.7 for more details).

Once two players are in the game, the server coordinates the turns between them. When a
client invokes the myMove method, the server records the move and notifies the other player
by marking the other player’s cell. It then checks to see whether the player wins or whether
the board is full. If neither condition applies and therefore the game continues, the server gives
a turn to the other player.

The CallBackImpl implements the CallBack interface. It creates an instance of
 TicTacToeClientRMI through its constructor. The CallBackImpl relays the server
request to the client by invoking the client’s methods. When the server invokes the takeTurn
method, CallBackImpl invokes the client’s setMyTurn() method to set the property
myTurn in the client. When the server invokes the notify() method, CallBackImpl
invokes the client’s setMessage() method to set the message on the client’s status label.
When the server invokes the mark method, CallBackImpl invokes the client’s mark method
to mark the specified cell.

Figure 40.9 Two players play each other through the RMI server.

M40_LIAN0182_11_SE_C40.indd 23 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

40-24 Chapter 40 Remote Method Invocation

Interestingly, obtaining the TicTacToeImpl stub for the client is different from obtain-
ing the CallBack stub for the server. The TicTacToeImpl stub is obtained by invoking the
lookup() method through the RMI registry, and the CallBack stub is passed to the server
through the connect method in the TicTacToeImpl stub. It is a common practice to obtain
the first stub with the lookup method, but to pass the subsequent stubs as parameters through
remote method invocations.

Since the variables myTurn and marker are defined in TicTacToeClientRMI, the Cell
class is defined as an inner class within TicTacToeClientRMI in order to enable all the cells
in the client to access them. Exercise 40.8 suggests alternative approaches that implement the
Cell as a noninner class.

 40.6.1 What is the problem if the connect method in the TicTacToeInterface is
defined as

public boolean connect(CallBack client, char token)
 throws RemoteException;

or as

public boolean connect(CallBack client, Character token)
 throws RemoteException;

 40.6.2 What is callback? How does callback work in RMI?

Point
Check

Key Terms

callback 40-13
RMI registry 40-3

skeleton 40-3
stub 40-3

ChapTer summary

1. RMI is a high-level Java API for building distributed applications using distributed
objects.

2. The key idea of RMI is its use of stubs and skeletons to facilitate communications
between objects. The stub and skeleton are automatically generated, which relieves pro-
grammers of tedious socket-level network programming.

3. For an object to be used remotely, it must be defined in an interface that extends the
java.rmi.Remote interface.

4. In an RMI application, the initial remote object must be registered with the RMI registry
on the server side and be obtained using the lookup method through the registry on the
client side. Subsequent uses of stubs of other remote objects may be passed as parameters
through remote method invocations.

5. RMI is especially useful for developing scalable and load-balanced multitier distributed
applications.

 Quiz

Answer the quiz for this chapter online at the book Companion Website.

M40_LIAN0182_11_SE_C40.indd 24 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 40-25

programming exerCises

Section 40.3
 *40.1 (Limit the number of clients) Modify the example in Section 40.3.1, Example:

Retrieving Student Scores from an RMI Server, to limit the number of concurrent
clients to 10.

 *40.2 (Compute loan) Rewrite Programming Exercise 33.1 using RMI. You need to define
a remote interface for computing monthly payment and total payment.

 **40.3 (Web visit count) Rewrite Programming Exercise 33.4 using RMI. You need to
define a remote interface for obtaining and increasing the count.

 **40.4 (Display and add addresses) Rewrite Programming Exercise 33.6 using RMI.
You need to define a remote interface for adding addresses and retrieving address
information.

Section 40.5
 **40.5 (Address in a database table) Rewrite Programming Exercise 40.4. Assume the

address is stored in a table.

 **40.6 (Three-tier application) Use the three-tier approach to modify Programming
 Exercise 40.4, as follows:

■■ Create a JavaFX client to manipulate student information, as shown in
Figure 33.23a.

■■ Create a remote object interface with methods for retrieving, inserting, and
updating student information, and an object implementation for the interface.

Section 40.6
 **40.7 (Chat) Rewrite Programming Exercise 33.13 using RMI. You need to define a

remote interface for sending and receiving a message.

 **40.8 (Improve TicTacToe) Modify the TicTacToe example in Section 40.6, RMI
 Callbacks, as follows:

■■ Allow a client to connect to the server as an observer to watch the game.
■■ Rewrite the Cell class as a noninner class.

M40_LIAN0182_11_SE_C40.indd 25 5/29/17 10:06 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To describe what a Web service is (§41.1).

■■ To create a Web service class (§41.2).

■■ To publish and test a Web service (§41.3).

■■ To create a Web service client reference (§41.4).

■■ To explain the role of WSDL (§41.4).

■■ To pass arguments of object type in a Web service (§41.5).

■■ To discover how a client communicates with a Web service (§41.5).

■■ To describe what SOAP requests and SOAP responses are (§41.5).

■■ To track a session in Web services (§41.6).

Web Services

CHAPTER

41

M41_LIAN0182_11_SE_C41.indd 1 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-2 Chapter 41 Web Services

41.1 Introduction
Web services is about sharing objects on the Internet.

Web service is a technology that enables programs to communicate through HTTP on the
Internet. Web services enable a program on one system to invoke a method in an object on
another system. You can develop and use Web services using any languages on any platform.
Web services are simple and easy to develop.

Web services run on the Web using HTTP. There are several APIs for Web services. A
popular standard is the Simple Object Access Protocol (SOAP), which is based on XML. The
computer on which a Web service resides is referred to as a server. The server needs to make
the service available to the client, known as publishing a Web service. Using a Web service
from a client is known as consuming a Web service.

A client interacts with a Web service through a proxy object. The proxy object facilitates the
communication between the client and the Web service. The client passes arguments to invoke
methods on the proxy object. The proxy object sends the request to the server and receives the
result back from the server, as shown in Figure 41.1.

Figure 41.1 A proxy object serves as a facilitator between a client and a Web service.

Client

Web
service
proxy
object

Server

Web
serviceInternet

Point
Key

 41.1.1 What is a Web service?

 41.1.2 Can you invoke a Web service from a language other than Java?

 41.1.3 Do Web services support callback? That is, can a Web service call a method from
a client’s program?

 41.1.4 What is SOAP? What is it to publish a Web service? What is it to consume a Web
service? What is the role of a proxy object?

41.2 Creating Web Services
An IDE such as NetBeans is an effective tool for developing and deploying
Web services.

There are many tools for creating Web services. This book demonstrates creating Web services
using NetBeans.

Note
Apache Tomcat Server does not work well with Web services. To develop and deploy
Web services using NetBeans, you need to install GlassFish. For information on how to
install GlassFish on NetBeans.

We now create a Web service for obtaining student scores. A Web service is a class that
contains the methods for the client to invoke. Name the class ScoreService with a method
named findScore(String name) that returns the score for a student.

First, you need to create a Web project using the following steps:

1. Choose File, New Project to display the New Project dialog box. In the New Project
dialog box, choose Java Web in the Categories pane and choose Web Application in
the Projects pane. Click Next to display the New Web Application dialog box.

Point
Check

Point
Key

M41_LIAN0182_11_SE_C41.indd 2 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.2 Creating Web Services 41-3

2. Enter WebServiceProject as the project name, specify the location where you want
the project to be stored, and click Next to display the Server and Setting dialog.

3. Select GlassFish 4 as the server and Java EE 7 Web as the Java EE version. Click
Finish to create the project.

Now you can create the ScoreService class in the project as follows:

1. Right-click the WebServiceProject in the Project pane to display a context menu.
Choose New, Web Service to display the New Web Service dialog box. (If you don’t
see Web Service, click New, Other to display the New File dialog box to choose Web
Service in this dialog box.)

2. Enter ScoreService in the Web Service Name field and enter chapter41 in the Pack-
age field. Click Finish to create ScoreService.

3. Complete the source code as shown in Listing 41.1.

Listing 41.1 ScoreService.java
 1 package chapter41;
 2
 3 import java.util.HashMap;
 4 import javax.jws.WebService; // For annotation @WebService
 5 import javax.jws.WebMethod; // For annotation @WebMethod
 6
 7 @WebService(name = "ScoreService", serviceName = "ScoreWebService")
 8 public class ScoreService {
 9 // Stores scores in a map indexed by name
10 private HashMap<String, Double> scores =
11 new HashMap<String, Double>();
12
13 public ScoreService() {
14 scores.put("John", 90.5);
15 scores.put("Michael", 100.0);
16 scores.put("Michelle", 98.5);
17 }
18
19 @WebMethod(operationName = "findScore")
20 public double findScore(String name) {
21 Double d = scores.get(name);
22
23 if (d == null) {
24 System.out.println("Student " + name + " is not found ");
25 return –1;
26 }
27 else {
28 System.out.println("Student " + name + "\’s score is "
29 + d.doubleValue());
30 return d.doubleValue();
31 }
32 }
33 }

Lines 4–5 import the annotations used in the program in lines 7 and 19. Annotation is a new
feature in Java, which enables you to simplify coding. The compiler will automatically gener-
ate the code for the annotated directives. So, it frees the programmer from writing the detailed
boilerplate code that could be generated mechanically. The annotation (line 7)

@WebService(name = "ScoreService", serviceName = "ScoreWebService")

tells the compiler that the class ScoreService is associated with the Web service named
ScoreWebService.

M41_LIAN0182_11_SE_C41.indd 3 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-4 Chapter 41 Web Services

The annotation (line 19)

@WebMethod(operationName = "findScore")

indicates that findScore is a method that can be invoked from a client.
The findScore method returns a score if the name is in the hash map. Otherwise, it returns

−1.0.
You can manually type the code for the service, or create it from the Design tab, as shown

in Figure 41.2.

Figure 41.2 The services can also be created from the Design pane.

41.3 Deploying and Testing Web Services
Deploying a Web service is to make it available on the Internet for other programs
to use.

After a Web service is created, you need to deploy it for clients to use. Deploying Web services
is also known as publishing Web services. To deploy it, right-click the WebServiceProject
in the Project to display a context menu and choose Deploy. This command will first undeploy
the service if it was deployed and then redeploy it.

Now you can test the Web service by entering the follow URL in a browser, as shown in
Figure 41.3.

http://localhost:8080/WebServiceProject/ScoreWebService?Tester

Note ScoreWebService is the name you specified in line 7 in Listing 41.1. This Web
service has only one remote method named findScore. You can define an unlimited number
of remote methods in a Web service class. If so, all these methods will be displayed in the
test page.

To test the findScore method, enter Michael and click the findScore button. You will
see that the method returns 100.0, as shown in Figure 41.4.

Point
Key

M41_LIAN0182_11_SE_C41.indd 4 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.3 Deploying and Testing Web Services 41-5

Note
If your computer is connected to the Internet, you can test Web services from another
computer by entering the following URL:

http://host:8080/WebServiceProject/ScoreWebService?Tester

Where host is the host name or IP address of the server on which the Web service is run-
ning. On Windows, you can find your IP address by typing the command ipconfig.

Note
If you are running the server on Windows, the firewall may prevent remote clients from
accessing the service. To enable it, do the following:

1. In the Windows control panel, click Windows Firewall to display the Windows
Firewall dialog box.

Figure 41.3 The test page enables you to test Web services.

Figure 41.4 The method returns a test value.

M41_LIAN0182_11_SE_C41.indd 5 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-6 Chapter 41 Web Services

2. In the Advanced tab, double-click Local Area Connection to display the Advanced
Settings dialog box. Check Web Server (HTTP) to enable HTTP access to the server.

3. Click OK to close the dialog box.

41.4 Consuming Web Services
Consuming a Web service is for a client to use a Web service.

After a Web service is published, you can write a client program to use it. A client can be any
program (standalone application, servlet/JSP/JSF application, or another Web service) and
written in any language.

We will use NetBeans to create a Web service client. Our client is a GUI application. The
application simply lets the user enter a name and displays the score, as shown in Figure 41.5.

Point
Key

Figure 41.5 The client uses the Web service to find scores.

Let us create a project for the client. The project named ScoreWebServiceClient
Project can be created as follows:

1. Choose File, New Project to display the New Project dialog box.

2. In the New Project dialog box, choose Java in the Categories pane and choose Java
Application in the Projects pane. Click Next to display the New Java Application
dialog box.

3. Enter ScoreWebServiceClientProject as the project name, specify the location
where you want the project to be stored, and uncheck the Create Main Class check box.
Click Finish to create the project.

You need to create a Web service reference to this project. The reference will enable you
to create a proxy object to interact with the Web service. Here are the steps to create a Web
service reference:

1. Right-click the ScoreWebServiceClientProject in the Project pane to display a
context menu. Choose New, Web Service Client to display the New Web Service
Client dialog box, as shown in Figure 41.6.

2. Check the WSDL URL radio button and enter http://localhost:8080/WebServiceProject/
ScoreWebService?WSDL in the WSDL URL field.

3. Enter myWebservice in the package name field. Click Finish to generate the Web
service reference.

Now you will see ScoreWebService created in the Web Service References folder in the
Projects tab. The IDE has generated many supporting files for the reference. You can view all
the generated .java files from the Files tab in the project pane, as shown in Figure 41.7. These
files will be used by the proxy object to interact with the Web service.

M41_LIAN0182_11_SE_C41.indd 6 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.4 Consuming Web Services 41-7

Note
When you created a Web service reference, you entered a WSDL URL, as shown in
 Figure 41.6. This creates a .wsdl file. In this case, it is named ScoreWebService.wsdl
under the Web Service References folder, as shown in Figure 41.8. So what is WSDL?
WSDL stands for Web Service Description Language. A .wsdl file is an XML file that
describes the available Web service to the client—i.e., the remote methods, their param-
eters and return value types, and so on.

Note
If the Web service is modified, you need to refresh the reference for the client. To do
so, right-click the Web service node under Web Service References to display a context
menu and choose Refresh Client.

Now you are ready to create a client for the Web service. Right-click the ScoreWeb Service
ClientProject node in the Project pane to display a context menu, and choose New, Class
to create a Java client named FindScoreApp in package chapter41, as shown in Listing 41.2.

Figure 41.6 The New Web Service Client dialog box creates a Web service reference.

Figure 41.7 You can see the automatically generated boilerplate code for Web services in
the Generated Sources folder in the client’s project.

M41_LIAN0182_11_SE_C41.indd 7 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-8 Chapter 41 Web Services

Listing 41.2 FindScoreApp.java
 1 package chapter41;
 2
 3 import javafx.application.Application;
 4 import javafx.scene.Scene;
 5 import javafx.scene.control.Button;
 6 import javafx.scene.control.Label;
 7 import javafx.scene.control.TextField;
 8 import javafx.scene.layout.GridPane;
 9 import javafx.stage.Stage;
10 import myWebservice.ScoreWebService;
11 import myWebservice.ScoreService;
12
13 public class FindScoreApp extends Application {
14 // Declare a service object and a proxy object
15 private ScoreWebService scoreWebService = new ScoreWebService();
16 private ScoreService proxy
17 = scoreWebService.getScoreServicePort();
18
19 private Button btGetScore = new Button("Get Score");
20 private TextField tfName = new TextField();
21 private TextField tfScore = new TextField();
22
23 public void start(Stage primaryStage) {
24 GridPane gridPane = new GridPane();
25 gridPane.setHgap(5);
26 gridPane.add(new Label("Name"), 0, 0);
27 gridPane.add(new Label("Score"), 0, 1);
28 gridPane.add(tfName, 1, 0);
29 gridPane.add(tfScore, 1, 1);
30 gridPane.add(btGetScore, 1, 2);
31
32 // Create a scene and place the pane in the stage
33 Scene scene = new Scene(gridPane, 250, 250);
34 primaryStage.setTitle("FindScoreApp"); // Set the stage title
35 primaryStage.setScene(scene); // Place the scene in the stage
36 primaryStage.show(); // Display the stage
37

Figure 41.8 The .wsdl file describes Web services to clients.

M41_LIAN0182_11_SE_C41.indd 8 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.5 Passing and Returning Arguments 41-9

38 btGetScore.setOnAction(e -> getScore());
39 }
40
41 private void getScore() {
42 try {
43 // Get student score
44 double score = proxy.findScore(tfName.getText().trim());
45
46 // Display the result
47 if (score < 0)
48 tfScore.setText("Not found");
49 else
50 tfScore.setText(new Double(score).toString());
51 }
52 catch(Exception ex) {
53 ex.printStackTrace();
54 }
55 }
56 }

The program creates a Web service object (line 11) and creates a proxy object (line 12) to
interact with the Web service.

To find a score for a student, the program invokes the remote method findScore on the
proxy object (line 39).

41.5 Passing and Returning Arguments
The Simple Object Access Protocol (SOAP) can be used to send and return values to
and from a Web service.

In the preceding example, a Web service client you created invokes the findScore method
with a string argument, and the Web service executes the method and returns a score as a dou
ble value. How does this work? It is the Simple Object Access Protocol (SOAP) that facilitates
communications between the client and the server.

SOAP is based on XML. The message between the client and the server is described
in XML. Figure 41.9 shows the SOAP request and SOAP response for the findScore
method.

When invoking the findScore method, a SOAP request is sent to the server. The request
contains the information about the method and the argument. As shown in Figure 41.9, the
XML text

<ns1:findScore>
 <arg0>Michael</arg0>
</ns1:findScore>

specifies that the method findScore is called with argument Michael.
Upon receiving the SOAP request, the Web service parses it. After parsing it, the Web ser-

vice invokes an appropriate method with specified arguments (if any) and sends the response
back in a SOAP response. As shown in Figure 41.9, the XML text

<ns1:findScoreResponse>
 <return>100.0</return>
</ns1:findScoreResponse>

specifies that the method returns 100.0.

Point
Key

M41_LIAN0182_11_SE_C41.indd 9 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-10 Chapter 41 Web Services

The proxy object receives the SOAP response from the Web service and parses it. This
process is illustrated in Figure 41.10.

Can you pass an argument of any type between a client and a Web service? No.
SOAP supports only primitive types, wrapper types, arrays, String, Date, Time, List,
and several other types. It also supports certain custom classes. An object that is sent to or
from a server is serialized into XML. The process of serializing/deserializing objects, called

Figure 41.9 The client request and server response are described in XML.

M41_LIAN0182_11_SE_C41.indd 10 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.5 Passing and Returning Arguments 41-11

XML serialization/deserialization, is performed automatically. For a custom class to be used
with Web methods, the class must meet the following requirements:

1. The class must have a no-arg constructor.

2. Instance variables that should be serialized must have public get and set methods. The
classes of these variables must be supported by SOAP.

To demonstrate how to pass an object argument of a custom class, Listing 41.3 defines a Web
service class named AddressService with two remote methods:

■■ getAddress(String firstName, String lastName) that returns an Address
object for the specified firstName and lastName.

■■ storeAddress(Address address) that stores a Student object to the database.

Address information is stored in a table named Address in the database. The Address class
was defined in Listing 42.12, Address.java. An Address object can be passed to or returned
from a remote method, since the Address class has a no-arg constructor with get and set
methods for all its properties.

Here are the steps to create a Web service named AddressService and the Address
class in the project.

1. Right-click the WebServiceProject node in the project pane to display a context
menu. Choose New, Web Service to display the New Web Service dialog box.

2. In the Web Service Name field, enter AddressService. In the Package field, enter
chapter41. Click Finish to create the service class.

3. Right-click the WebServiceProject node in the project pane to display a context
menu. Choose New, Java Class to display the New Java Class dialog box.

4. In the Class Name field, enter Address. In the Package field, enter chapter37. Click
Finish to create the class.

The Address class is the same as shown in Listing 37.12. Complete the AddressService
class as shown in Listing 41.3.

Listing 41.3 AddressService.java
 1 package chapter41;
 2
 3 import chapter37.Address;
 4 import java.sql.*;
 5 import javax.jws.WebMethod;
 6 import javax.jws.WebService;
 7
 8 @WebService(name = "AddressService",
 9 serviceName = "AddressWebService")

Figure 41.10 A proxy object sends SOAP requests and receives SOAP responses.

Client

Web
service
proxy
object

Server

SOAP Response

SOAP Request
Web

service

M41_LIAN0182_11_SE_C41.indd 11 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-12 Chapter 41 Web Services

10 public class AddressService {
11 // statement1 for retrieving an address and statement2 for storing
12 private PreparedStatement statement1;
13
14 // statement2 for storing an address
15 private PreparedStatement statement2;
16
17 public AddressService() {
18 initializeJdbc();
19 }
20
21 @WebMethod(operationName = "getAddress")
22 public Address getAddress(String firstName, String lastName) {
23 try {
24 statement1.setString(1, firstName);
25 statement1.setString(2, lastName);
26 ResultSet resultSet = statement1.executeQuery();
27
28 if (resultSet.next()) {
29 Address address = new Address();
30 address.setFirstName(resultSet.getString("firstName"));
31 address.setLastName(resultSet.getString("lastName"));
32 address.setMi(resultSet.getString("mi"));
33 address.setTelephone(resultSet.getString("telephone"));
34 address.setFirstName(resultSet.getString("email"));
35 address.setCity(resultSet.getString("telephone"));
36 address.setState(resultSet.getString("state"));
37 address.setZip(resultSet.getString("zip"));
38 return address;
39 }
40 else
41 return null;
42 } catch (SQLException ex) {
43 ex.printStackTrace();
44 }
45
46 return null;
47 }
48
49 @WebMethod(operationName = "storeAddress")
50 public void storeAddress(Address address) {
51 try {
52 statement2.setString(1, address.getLastName());
53 statement2.setString(2, address.getFirstName());
54 statement2.setString(3, address.getMi());
55 statement2.setString(4, address.getTelephone());
56 statement2.setString(5, address.getEmail());
57 statement2.setString(6, address.getStreet());
58 statement2.setString(7, address.getCity());
59 statement2.setString(8, address.getState());
60 statement2.setString(9, address.getZip());
61 statement2.executeUpdate();
62 } catch (SQLException ex) {
63 ex.printStackTrace();
64 }
65 }
66
67 /** Initialize database connection */
68 public void initializeJdbc() {

M41_LIAN0182_11_SE_C41.indd 12 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.5 Passing and Returning Arguments 41-13

69 try {
70 Class.forName("com.mysql.jdbc.Driver");
71
72 // Connect to the sample database
73 Connection connection = DriverManager.getConnection(
74 "jdbc:mysql://localhost/javabook", "scott", "tiger");
75
76 statement1 = connection.prepareStatement(
77 "select * from Address where firstName = ? and lastName = ?");
78 statement2 = connection.prepareStatement(
79 "insert into Address " +
80 "(lastName, firstName, mi, telephone, email, street, city, "
81 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
82 } catch (Exception ex) {
83 ex.printStackTrace();
84 }
85 }
86 }

The new Web service is named AddressWebService (line 9) for the AddressService
class.

When the service is deployed, the constructor (lines 17–19) of AddressWebService is
invoked to initialize a database connection and create prepared statement1 and statement2
(lines 68–85).

The findAddress method searches the address in the Address table for the specified
firstName and lastName. If found, the address information is returned in an Address object
(lines 29–38). Otherwise, the method returns null (line 41).

The storeAddress method stores the address information from the Address object into
the database (lines 52–61).

Note
Don’t forget that you have to add the MySQL library to the WebServiceProject for
this example to run.

Before you can use the service, deploy it. Right-click the WebServiceProject node in the
Project to display a context menu and choose Deploy.

Now you are ready to develop a Web client that uses the AddressWebService. The
client is a JSP program, as shown in Figure 41.11. The program has two functions. First,
the user can enter the last name and first name and click the Search button to search for a
record, as shown in Figure 41.12. Second, the user can enter the complete address infor-
mation and click the Store button to store the information to the database, as shown in
Figure 41.13.

Let us create a project for the client. The project named AddressWebServiceClient
Project can be created as follows:

1. Choose File, New Project to display the New Web Application dialog box. In the
New Web Application dialog box, choose Java Web in the Categories pane and choose
Web Application in the Projects pane. Click Next to display the Name and Location
dialog box.

2. Enter AddressWebServiceClientProject as the project name, specify the location
where you want the project to be stored, and uncheck the Set as Main Project check box.
Click Next to display the Server and Settings dialog box.

3. Choose GlassFish Server 4 in the Server field, and Java EE 7 Web as in the Java
EE Version field, and click Finish to create the project.

M41_LIAN0182_11_SE_C41.indd 13 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-14 Chapter 41 Web Services

Figure 41.12 The Search button finds and displays an address.

Figure 41.13 The Store button stores the address to the database.

Figure 41.11 The TestAddressWebService page allows the user to search and store
addresses.

M41_LIAN0182_11_SE_C41.indd 14 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.5 Passing and Returning Arguments 41-15

You need to create a Web service reference to this project. The reference will enable you
to create a proxy object to interact with the Web service. Here are the steps to create a Web
service reference:

1. Right-click the AddressWebServiceClientProject node in the Project pane to dis-
play a context menu. Choose New, Web Service Client to display the New Web
Service Client dialog box.

2. Check the WSDL URL radio button and enter http://localhost:8080/WebServiceProject/
AddressWebService?WSDL in the WSDL URL field.

3. Enter myWebservice in the package name field and choose JAXWS as the JAX version.
Click Finish to generate the Web service reference.

Now a reference to AddressWebService is created. Note this process also copies
Address.java to the client project, as shown in Figure 41.14.

Figure 41.14 Address.java is automatically copied to the Web service client reference
package.

Create a JSP named TestAddressWebService in the AddressWebServiceClient
Project project, as shown in Listing 41.4.

Listing 41.4 TestAddressWebService.jsp
 1 <!-- TestAddressWebService.jsp -->
 2 <%@ page import = "myWebservice.Address" %>
 3 <%@ page import = "myWebservice.AddressWebService" %>
 4 <%@ page import = "myWebservice.AddressService" %>
 5 <jsp:useBean id = "addressId"
 6 class = "myWebservice.Address" scope = "session"></jsp:useBean>
 7 <jsp:setProperty name = "addressId" property = "*" />
 8

M41_LIAN0182_11_SE_C41.indd 15 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-16 Chapter 41 Web Services

 9 <html>
 10 <head>
 11 <title>Address Information</title>
 12 </head>
 13 <body>
 14 <form method = "post" action = "TestAddressWebService.jsp">
 15 Last Name *
 16 <input type = "text" name = "lastName"
 17 <%if (addressId.getLastName() != null) {
 18 out.print("value = \"" + addressId.getLastName() + "\"");}%>
 19 size = "20" />
 20
 21 First Name *
 22 <input type = "text" name = "firstName"
 23 <%if (addressId.getFirstName() != null) {
 24 out.print("value = \"" + addressId.getFirstName() + "\"");}%>
 25 size = "20" />
 26
 27 MI
 28 <input type = "text" name = "mi"
 29 <%if (addressId.getMi() != null) {
 30 out.print("value = \"" + addressId.getMi() + "\" "); } %>
 31 size = "3" />
 32
 33 <p>Telephone
 34 <input type = "text" name = "telephone"
 35 <%if (addressId.getTelephone() != null) {
 36 out.print("value = \"" + addressId.getTelephone() + "\" ");}%>
 37 size = "20" />
 38
 39 Email
 40 <input type = "text" name = "email"
 41 <%if (addressId.getEmail() != null) {
 42 out.print("value = \"" + addressId.getEmail() + "\" ");}%>
 43 size = "28" />
 44 </p>
 45
 46 <p>Street
 47 <input type = "text" name = "street"
 48 <%if (addressId.getStreet() != null) {
 49 out.print("value = \"" + addressId.getStreet() + "\" ");}%>
 50 size = "50" />
 51 </p>
 52
 53 <p>City
 54 <input type = "text" name = "city"
 55 <%if (addressId.getCity() != null) {
 56 out.print("value = \"" + addressId.getCity() + "\" ");}%>
 57 size = "23" />
 58
 59 State
 60 <select size = "1" name = "state">
 61 <option value = "GA">Georgia-GA</option>
 62 <option value = "OK">Oklahoma-OK</option>
 63 <option value = "IN">Indiana-IN</option>
 64 </select>
 65
 66 Zip
 67 <input type = "text" name = "zip"
 68 <%if (addressId.getZip() != null) {
 69 out.print("value = \"" + addressId.getZip() + "\" "); } %>

M41_LIAN0182_11_SE_C41.indd 16 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.6 Web Service Session Tracking 41-17

 70 size = "9" />
 71 </p>
 72
 73 <p><input type = "submit" name = "Submit" value = "Search">
 74 <input type = "submit" name = "Submit" value = "Store">
 75 <input type = "reset" value = "Reset">
 76 </p>
 77 </form>
 78 <p>* required fields</p>
 79
 80 <%
 81 if (request.getParameter("Submit") != null) {
 82 AddressWebService addressWebService = new AddressWebService();
 83 AddressService proxy = addressWebService.getAddressServicePort();
 84
 85 if (request.getParameter("Submit").equals("Store")) {
 86 proxy.storeAddress(addressId);
 87 out.println(addressId.getFirstName() + " " +
 88 addressId.getLastName() + " has been added to the database");
 89 }
 90 else if (request.getParameter("Submit").equals("Search")) {
 91 Address address = proxy.getAddress(addressId.getFirstName(),
 92 addressId.getLastName());
 93 if (address == null)
 94 out.print(addressId.getFirstName() + " " +
 95 addressId.getLastName() + " is not in the database");
 96 else
 97 addressId = address;
 98 }
 99 }
100 %>
101 </body>
102 </html>

Lines 2–4 import the classes for the JSP page. The Address class (line 2) was created in
the WebServiceProject and was automatically copied to the AddressWebService
ClientProject project when a Web service reference for AddressWebService was created.
A JavaBeans object for Address was created and associated with input parameters in lines 5–7.

The UI interface was laid in the form (lines 14–77). The action for the two buttons Search
and Store invokes the same page TestAddressWebService.jsp (line 14).

When a button is clicked, a proxy object for AddressWebService is obtained (lines
82–83). For the Store button, the proxy object invokes the storeAddress method to add an
address to the database (line 86). For the Search button, the proxy object invokes the getAd
dress method to return an address (lines 91–92). If no address is found for the specified first
and last names, the returned address is null (line 93).

41.6 Web Service Session Tracking
You can use the HttpSession interface to session tracking for Web.

Section 37.8.3, Session Tracking Using the Servlet API, introduced session tracking for servlets
using the javax.servlet.http.HttpSession interface. You can use Http Session to
implement session tracking for Web services. To demonstrate this, consider an example that
generates random True/False questions for the client and grades the answers on these ques-
tions for the client.

The Web client consists of two JSP pages: DisplayQuiz.jsp and GradeQuiz.jsp. The
 DisplayQuiz page invokes the service method getQuestion() to display the questions,
as shown in Figure 41.15. When you click the Submit button, the program invokes the service

Point
Key

M41_LIAN0182_11_SE_C41.indd 17 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-18 Chapter 41 Web Services

method gradeQuiz to grade the answers. The result is displayed in the GradeQuiz page, as
shown in Figure 41.16.

Why is session tracking needed for this project? Each time a client displays a quiz, it cre-
ates a randomly reorder the quiz for the client. Each client gets a different quiz every time the
DisplayQuiz page is refreshed. When the client submits the answer, the Web service checks
the answer against the previously generated quiz. So the quiz has to be stored in the session.

For convenience, let us create the Web service class named QuizService in the Web
ServiceProject in package chapter41. Listing 41.5 gives the program.

Listing 41.5 QuizService.java
 1 package chapter41;
 2
 3 import javax.jws.WebMethod;
 4 import javax.jws.WebService;
 5 import java.util.List;
 6 import java.util.ArrayList;
 7 import com.sun.xml.ws.developer.servlet.HttpSessionScope;
 8
 9 @HttpSessionScope
10 @WebService(name = "QuizService", serviceName = "QuizWebService")
11 public class QuizService {
12 private ArrayList<Object[]> quiz = new ArrayList<Object[]>();
13
14 public QuizService() {
15 // Initialize questions and answers
16 quiz.add(new Object[]{
17 "Is Atlanta the capital of Georgia?", true});
18 quiz.add(new Object[]{
19 "Is Columbia the capital of South Carolina?", true});
20 quiz.add(new Object[]{
21 "Is Fort Wayne the capital of Indiana?", false});

Figure 41.16 The answers are graded and displayed.

Figure 41.15 The Submit button submits the answers for grading.

M41_LIAN0182_11_SE_C41.indd 18 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.6 Web Service Session Tracking 41-19

22 quiz.add(new Object[]{
23 "Is New Orleans the capital of Louisiana?", false});
24 quiz.add(new Object[]{
25 "Is Chicago the capital of Illinois?", false});
26
27 // Shuffle to generate a random quiz for a client
28 java.util.Collections.shuffle(quiz);
29 }
30
31 @WebMethod(operationName = "getQuestions")
32 public java.util.List<String> getQuestions() {
33
34 // Extract questions from quiz
35 List<String> questions = new ArrayList<String>();
36 for (int i = 0; i < quiz.size(); i++) {
37 questions.add((String)(quiz.get(i)[0]));
38 }
39
40 return questions; // Return questions in the quiz
41 }
42
43 @WebMethod(operationName = "gradeQuiz")
44 public List<Boolean> gradeQuiz(List<Boolean> answers) {
45 List<Boolean> result = new ArrayList<Boolean>();
46 for (int i = 0; i < quiz.size(); i++)
47 result.add(quiz.get(i)[1] == answers.get(i));
48
49 return result;
50 }
51 }

The Web service class named QuizService contains two methods getQuestions and
gradeQuiz. The new Web service is named QuizWebService (line 10).

The annotation @HttpSessionScope (line 9) is new in JAX-WS 2.2, which enables the
Web service automatically maintains a separate instance for each client session. To use this
annotation, you have add JAX-WS 2.2 into your project’s library. This can be done by clicking
the Library node in the project and select Add Library.

Assume five True/False questions are available from the service. The quiz is stored in an
ArrayList (lines 16–25).

Each element in the list is an array with two values. The first value is a string that describes
the question and the second is a Boolean value indicating whether the answer should be true
or false.

A new quiz is generated in the constructor and the quiz is shuffled using the shuffle method
in the Collections class (line 28).

The getQuestions method (lines 31–40) returns questions in a list. The questions are
extracted from the quiz (lines 34–37) and are returned (line 39).

The gradeQuiz method (lines 42–49) checks the answers from the client with the answers
in the quiz. The client’s answers are compared with the key, and the result of the grading is
stored in a list. Each element in the list is a Boolean value that indicates whether the answer
is correct or incorrect (lines 44–46).

After creating and publishing the Web service, let us create a project for the client. The
project named QuizWebServiceClientProject can be created as follows:

1. Choose File, New Project to display the New Web Application dialog box.

2. In the New Web Application dialog box, choose Java Web in the Categories pane and
choose Web Application in the Projects pane. Click Next to display the Name and
Location dialog box.

M41_LIAN0182_11_SE_C41.indd 19 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-20 Chapter 41 Web Services

3. Enter QuizWebServiceClientProject as the project name, specify the location
where you want the project to be stored, and uncheck the Set as Main Project check
box. Click Next to display the Server and Settings dialog box.

4. Choose GlassFish Server 4 in the Server field, and Java EE 7 Web as in the Java
EE Version field, and click Finish to create the project.

To use QuizWebService, you need to create a Web service client as follows:

1. Right-click the QuizWebServiceClientProject project in the Project pane to display
a context menu. Choose New, Web Service Client to display the New Web Service
Client dialog box.

2. Check the WSDL URL radio button and enter http://localhost:8080/WebServiceProject/
QuizWebService?WSDL in the WSDL URL field.

3. Enter myWebservice in the Package field. Click Finish to create the reference for
QuizWebService.

Now a reference to QuizWebService is created. You can create a proxy object to access the
remote methods in QuizService. Listings 41.6 and 41.7 show DisplayQuiz.jsp and Grad-
eQuiz.jsp.

Listing 41.6 DisplayQuiz.jsp
 1 <!-- DisplayQuiz.jsp -->
 2 <%@ page import = "myWebservice.QuizWebService" %>
 3 <%@ page import = "myWebservice.QuizService" %>
 4 <jsp:useBean id = "quizWebService" scope = "session"
 5 class = "myWebservice.QuizWebService">
 6 </jsp:useBean>
 7
 8 <html>
 9 <body>
10 <%
11 QuizService proxy = quizWebService.getQuizServicePort();
12 java.util.List<String> questions =
13 (java.util.ArrayList<String>)(proxy.getQuestions());
14 %>
15 <form method = "post" action = "GradeQuiz.jsp">
16 <table>
17 <% for (int i = 0; i < questions.size(); i++) {%>
18 <tr>
19 <td>
20 <label><%= questions.get(i) %></label>
21 </td>
22 <td>
23 <input type = "radio" name = <%= "question" + i%>
24 value = "True" /> True
25 </td>
26 <td>
27 <input type = "radio" name = <%= "question" + i%>
28 value = "False" /> False
29 </td>
30 </tr>
31 <%}%>
32 </table>
33 <p><input type = "submit" name = "Submit" value = "Submit">
34 <input type = "reset" value = "Reset">

M41_LIAN0182_11_SE_C41.indd 20 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41.6 Web Service Session Tracking 41-21

35 </p>
36 </form>
37 </body>
38 </html>

This page generates a quiz by invoking the getQuestions() in lines 12–13. The ques-
tions are displayed in a table with radio buttons (lines 16–32). Clicking the Submit button
invokes GradeQuiz.jsp.

Listing 41.7 GradeQuiz.jsp
 1 <!-- GradeQuiz.jsp -->
 2 <%@ page import = "myWebservice.QuizWebService" %>
 3 <%@ page import = "myWebservice.QuizService" %>
 4 <jsp:useBean id = "quizWebService" scope = "session"
 5 class = "myWebservice.QuizWebService">
 6 </jsp:useBean>
 7
 8 <html>
 9 <body>
10 <%
11 QuizService proxy = quizWebService.getQuizServicePort();
12 java.util.List<String> quiz = proxy.getQuestions();
13
14 // Get the answer from the DisplayQuiz page
15 java.util.List<Boolean> answers = new java.util.ArrayList<Boolean>();
16 for (int i = 0; i < quiz.size(); i++) {
17 String trueOrFalse = request.getParameter("question" + i);
18 if (trueOrFalse.equals("True"))
19 answers.add(true); // Answered true
20 else if (trueOrFalse.equals("False"))
21 answers.add(false); // Answered false
22 }
23
24 // Grade answers
25 java.util.List<Boolean> result = proxy.gradeQuiz(answers);
26
27 // Find the correct count
28 int correctCount = 0;
29 for (int i = 0; i < result.size(); i++) {
30 if (result.get(i))
31 correctCount++;
32 }
33 %>
34
35 Out of <%= result.size() %> questions, <%= correctCount %> correct.
36 </body>
37 </html>

This page collects the answers passed from the HTML form from the DisplayQuiz page
(lines 15–21), invokes the gradeQuiz method to grade the quiz (line 25), finds the correct
count (lines 28–31), and displays the result (line 35).

Note
You need to answer all five questions before clicking the Submit button. A runtime error
will occur if a radio button is not checked. You can fix this problem in Exercise 41.5.

M41_LIAN0182_11_SE_C41.indd 21 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

41-22 Chapter 41 Web Services

 41.6.1 What is the annotation to specify a Web service? What is the annotation to specify
a Web method?

 41.6.2 How do you deploy a Web service in NetBeans?

 41.6.3 Can you test a Web service from a client?

 41.6.4 How do you create a Web service reference for a client?

 41.6.5 What is WSDL? What is SOAP? What is a SOAP request? What is a SOAP
response?

 41.6.6 Can you pass primitive type arguments to a remote method? Can you pass any
object type to a remote method? Can you pass an argument of a custom type to a
remote method?

 41.6.7 How do you obtain an HttpSession object for tracking a Web session?

 41.6.8 Can you create two Web service references in one package in the same project in
NetBeans?

 41.6.9 What happens if you don’t clone the quiz in lines 40–41 in Listing 41.5, Quiz-
Service.java?

Point
Check

Key Terms

@WebService 41-3
@WebMethod 41-3
consuming a Web service 41-2
proxy object 41-2

publishing a Web service 41-2
Web service 41-2
Web service client reference 41-15
WSDL 41-6

ChapTer summary

1. Web services enable a Java program on one system to invoke a method in an object on
another system.

2. Web services are platform and language independent. You can develop and use Web
services using any language.

3. Web services run on the Web using HTTP. SOAP is a popular protocol for implement-
ing Web services.

4. The server needs to make the service available to the client, known as publishing a Web
service. Using a Web service from a client is known as consuming a Web service.

5. A client interacts with a Web service through a proxy object. The proxy object facilitates
the communication between the client and the Web service.

6. You need to use Java annotation @WebService to annotate a Web service and use
annotation @WebMethod to annotate a remote method.

7. A Web service class may have an unlimited number of remote methods.

8. After a Web service is published, you can write a client program to use it. You have to
first create a Web client reference. From the reference, you create a proxy object for
facilitating communication between a server and a client.

M41_LIAN0182_11_SE_C41.indd 22 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercisesg 41-23

9. WSDL stands for Web Service Description Language. A .wsdl file is an XML file that
describes the available Web service to the client—i.e., the remote methods, their param-
eters and return value types, and so on.

10. The message between the client and the server is described in XML. A SOAP request
describes the information that is sent to the Web service and a SOAP response describes
the information that is received from the Web service.

11. The objects passed between client and Web service are serialized in XML. Not all object
types are supported by SOAP.

12. You can track sessions in Web services using the HttpSession in the same way as in
servlets.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

 *41.1 (Get a score from a database table) Suppose the scores are stored in the Scores
table. The table was created as follows:

create table Scores (name varchar(20),
 score number, permission boolean);

insert into Scores values (‘John’, 90.5, 1);
insert into Scores values (’Michael’, 100, 1);
insert into Scores values (’Michelle’, 100, 0);

Revise the findScore method in Listing 41.1, ScoreService.java, to obtain a score
for the specified name. Note your program does not need the permission column;
ignore it. The next exercise will need the permission column.

 *41.2 (Permission to find scores) Revise the preceding exercise so that the find
Score method returns –1 if permission is false. Add an another method named
getPermission(String name) that returns 1, 0, or –1. The method returns 1 if
the student is in the Scores table and permission is true, 0 if the student is in the
Scores table and permission is false, and –1 if the student is not in the Scores
table.

 *41.3 (Compute loan) You can compute a loan payment for a loan with the specified
amount, the number of years, and the annual interest rate. Write a Web service with
two remote methods for computing monthly payment and total payment. Write a
client program that prompts the user to enter the loan amount, the number of years,
and the annual interest rate.

 *41.4 (Web service visit count) Write a Web service with a method named getCount()
that returns the number of the times this method has been invoked from a client.
Use a session to store the count variable.

 *41.5 (Quiz) The user needs to answer all five questions before clicking the Submit button
in the Quiz application in Section 41.6, Web Service Session Tracking. A runtime
error will occur if a radio button is not checked. Fix this problem.

M41_LIAN0182_11_SE_C41.indd 23 5/26/17 7:14 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To know what a 2–4 tree is (§42.1).

■■ To design the Tree24 class that implements the Tree interface (§42.2).

■■ To search an element in a 2–4 tree (§42.3).

■■ To insert an element in a 2–4 tree and know how to split a node (§42.4).

■■ To delete an element from a 2–4 tree and know how to perform transfer
and fusion operations (§42.5).

■■ To traverse elements in a 2–4 tree (§42.6).

■■ To implement and test the Tree24 class (§§42.7–42.8).

■■ To analyze the complexity of the 2–4 tree (§42.9).

■■ To use B-trees for indexing large amount of data (§42.10).

2–4 Trees and B-Trees

CHAPTER

42

M42_LIAN0182_11_SE_C42.indd 1 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-2 Chapter 42 2–4 Trees and B-Trees

42.1 Introduction
A 2–4 tree, also known as a 2–3–4 tree, is a completely balanced search tree with all
leaf nodes appearing on the same level.

In a 2–4 tree, a node may have one, two, or three elements as shown in Figure 42.1. An interior
2-node contains one element and two children. An interior 3-node contains two elements and
three children. An interior 4-node contains three elements and four children.

Point
Key

Figure 42.1 An interior node of a 2–4 tree has two, three, or four children.

(a) 2-node (b) 3-node (c) 4-node

c1c0

e0

c2c0 c1 c2 c3c0 c1

e0 e1 e2e0 e1

Figure 42.2 A 2–4 tree is a full complete search tree.

20

15 27 34

29 50 60 703 16 23 24 25

Each child is a sub 2–4 tree, possibly empty. The root node has no parent, and leaf nodes
have no children. The elements in the tree are distinct. The elements in a node are ordered
such that

E(c0) 6 e0 6 E(c1) 6 e1 6 E(c2) 6 e2 6 E(c3)

where E(ck) denote the elements in ck . Figure 42.2 shows an example of a 2–4 tree. ck is called
the left subtree of ek and ck + 1 is called the right subtree of ek .

In a binary tree, each node contains one element. A 2–4 tree tends to be shorter than a
corresponding binary search tree, since a 2–4 tree node may contain two or three elements.

Pedagogical Note
Run from http://liveexample.pearsoncmg.com/dsanimation/24Tree.html to see how a
2–4 tree works, as shown in Figure 42.3.

42.2 Designing Classes for 2–4 Trees
The Tree24 class defines a 2–4 tree and provides methods for searching, inserting,
and deleting elements.

The Tree24 class can be designed by implementing the Tree interface, as shown in
 Figure 42.4. The Tree interface was defined in Listing 27.3, Tree.java. The Tree24Node class
defines tree nodes. The elements in the node are stored in a list named elements and the links
to the child nodes are stored in a list named child, as shown in Figure 42.5.

Point
Key

M42_LIAN0182_11_SE_C42.indd 2 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.2 Designing Classes for 2–4 Trees 42-3

Figure 42.3 The animation tool enables you to insert, delete, and search elements in a 2–4 tree visually.

Figure 42.4 The Tree24 class implements Tree.

The root of the tree.

The size of the tree.

Creates a default 2-4 tree.

Creates a 2-4 tree from an array of objects.

Returns true if the element is in the tree.

Returns true if the element is added successfully.

Returns true if the element is removed from the tree
 successfully.
Returns true if element e is in the speci�ed node.

Returns the next child node to search for e.

Inserts element along with the reference to its right child
 to a 2- or 3-node.
Splits a 4-node u into u and v, inserts e to u or v, and
 returns the median element.
Locates the insertion point of the element in the node.

Deletes the speci�ed element from the node.

Performs a transfer and fusion operation if node u is
 empty.

Returns a search path that leads to element e.

1
Link

Tree<E>

Tree24<E>

-root: Tree24Node<E>

+size: int

+Tree24()

+Tree24(objects: E[])

+search(e: E): boolean

+insert(e: E): boolean

+delete(e: E): boolean

-matched(e: E, node: TreeNode<E>): boolean

-getChildNode(e: E, node: TreeNode<E>):
Tree24Node<E>

-insert23(e: E, rightChildOfe: Tree24Node<E>, node:
Tree24Node<E>): void

-split(e: E, rightChildOfe: Tree24Node<E>, u:
Tree24Node<E>, v: Tree24Node<E>): E

-locate(e: E, node: Tree24Node<E>): int

-delete(e: E, node: Tree24Node<E>): void

-validate(e: E, u: Tree24Node<E>, path:
ArrayList<Tree24Node<E>>): void

-path(e: E): ArrayList<E>

Tree24Node<E>

elements: ArrayList<E>
child: ArrayList<Tree24Node<E>>

+Tree24()
+Tree24(o: E)

An array list for storing the elements.

An array list for storing the links to the child nodes.

Creates an empty tree node.

Creates a tree node with an initial element.

m 0

M42_LIAN0182_11_SE_C42.indd 3 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-4 Chapter 42 2–4 Trees and B-Trees

 42.2.1 What is a 2–4 tree? What are a 2-node, 3-node, and 4-node?

 42.2.2 Describe the data fields in the Tree24 class and those in the Tree24Node class.

 42.2.3 What is the minimum number of elements in a 2–4 tree of height 5? What is the
maximum number of elements in a 2–4 tree of height 5?

42.3 Searching an Element
Searching an element in a 2–4 tree is similar to searching an element in a binary
tree. The difference is that you have to search an element within a node in addition to
searching elements along the path.

To search an element in a 2–4 tree, you start from the root and scan down. If an element is not
in the node, move to an appropriate subtree. Repeat the process until a match is found or you
arrive at an empty subtree. The algorithm is described in Listing 42.1.

Listing 42.1 Searching an Element in a 2–4 tree
 1 boolean search(E e) {
 2 current = root; // Start from the root
 3
 4 while (current != null) {
 5 if (match(e, current)) { // Element is in the node
 6 return true; // Element is found
 7 }
 8 else {
 9 current = getChildNode(e, current); // Search in a subtree
10 }
11 }
12 return false; // Element is not in the tree
13 }

The match(e, current) method checks whether element e is in the current node. The
getChildNode(e, current) method returns the root of the subtree for further search.
Initially, let current point to the root (line 2). Repeat searching for the element in the current
node until current is null (line 4) or the element matches an element in the current node.

42.4 Inserting an Element into a 2–4 tree
Inserting an element involves locating a leaf node and inserting the element into the
leaf node.

To insert an element e to a 2–4 tree, locate a leaf node in which the element will be inserted.
If the leaf node is a 2-node or 3-node, simply insert the element into the node. If the node is
a 4-node, inserting a new element would cause an overflow. To resolve overflow, perform a
split operation as follows:

■■ Let u be the leaf 4-node in which the element will be inserted and parentOfu be the
parent of u, as shown in Figure 42.6(a).

Point
Check

Point
Key

Point
Key

Figure 42.5 A 2–4 tree node stores the elements and the links to the child nodes in array lists.

child.get(0) child.get(1) child.get(2) child.get(4)child.get(3)

elements.get(0) elements.get(1) elements.get(2) elements.get(3)

M42_LIAN0182_11_SE_C42.indd 4 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.4 Inserting an Element into a 2–4 tree 42-5

■■ Create a new node named v; move e2 to v.

■■ If e 6 e1 , insert e to u; otherwise insert e to v. Assume e0 6 e 6 e1 , e is inserted
into u, as shown in Figure 42.6(b).

■■ Insert e1 along with its right child (i.e., v) to the parent node, as shown in Figure 42.6(b).

Figure 42.6 The splitting operation creates a new node and inserts the median element to
its parent.

parentOfu

u

p0 p1

e0 e1 e2

(a) Before inserting e (b) After inserting e

New child link

u v

p0 e1 p1

e0 e e2

Figure 42.7 Insertion process continues if the parent node is a 4-node.

parentOfu

(a) The parent is a 4-node

New child link

u v

p0 p1 p2

e0 e e2

e1

(b) Inserting e1 into the parent

parentOfu Right child
of e1

u ve0 e e2

e1

p0 p1 p2

The parent node is a 3-node in Figure 42.6. So, there is room to insert e to the parent node.
What happens if it is a 4-node, as shown in Figure 42.7? This requires that the parent node be
split. The process is the same as splitting a leaf 4-node, except that you must also insert the
element along with its right child.

The algorithm can be modified as follows:

■■ Let u be the 4-node (leaf or nonleaf) in which the element will be inserted and
parentOfu be the parent of u, as shown in Figure 42.8(a).

■■ Create a new node named v, move e2 and its children c2 and c3 to v.

■■ If e 6 e1 , insert e along with its right child link to u; otherwise insert e along
with its right child link to v, as shown in Figure 42.6(b), (c), (d) for the cases
e0 6 e 6 e1 , e1 6 e 6 e2 , and e2 6 e , respectively.

■■ Insert e1 along with its right child (i.e., v) to the parent node, recursively.

Listing 42.2 gives an algorithm for inserting an element.

Listing 42.2 Inserting an Element to a 2–4 tree
 1 public boolean insert(E e) {
 2 if (root == null)
 3 root = new Tree24Node<E>(e); // Create a new root for element
 4 else {
 5 Locate leafNode for inserting e
 6 insert(e, null, leafNode); // The right child of e is null
 7 }
 8
 9 size++; // Increase size
10 return true; // Element inserted
11 }
12

M42_LIAN0182_11_SE_C42.indd 5 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-6 Chapter 42 2–4 Trees and B-Trees

13 private void insert(E e, Tree24Node<E> rightChildOfe,
14 Tree24Node<E> u) {
15 if (u is a 2- or 3- node) { // u is a 2- or 3-node
16 insert23(e, rightChildOfe, u); // Insert e to node u
17 }
18 else { // Split a 4-node u
19 Tree24Node<E> v = new Tree24Node<E>(); // Create a new node
20 E median = split(e, rightChildOfe, u, v); // Split u
21
22 if (u == root) { // u is the root
23 root = new Tree24Node<E>(median); // New root
24 root.child.add(u); // u is the left child of median
25 root.child.add(v); // v is the right child of median
26 }
27 else {
28 Get the parent of u, parentOfu;
29 insert(median, v, parentOfu); // Inserting median to parent
30 }
31 }
32 }

The insert(E e, Tree24Node<E> rightChildOfe, Tree24Node<E> u) method
inserts element e along with its right child to node u. When inserting e to a leaf node, the right
child of e is null (line 6). If the node is a 2- or 3-node, simply insert the element to the node
(lines 15–17). If the node is a 4-node, invoke the split method to split the node (line 20).
The split method returns the median element. Recursively invoke the insert method to
insert the median element to the parent node (line 29). Figure 42.9 shows the steps of inserting
elements 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 into a 2–4 tree.

42.5 Deleting an Element from a 2–4 tree
Deleting an element involves locating the node that contains the element and remov-
ing the element from the node.

To delete an element from a 2–4 tree, first search the element in the tree to locate the node that
contains it. If the element is not in the tree, the method returns false. Let u be the node that
contains the element and parentOfu be the parent of u. Consider three cases:

Point
Key

Figure 42.8 An interior node may be split to resolve overflow.

parentOfu

u

c0 c1 c2
c3

p0 p1

e0 e1 e2

(a) Before inserting e (b) After inserting e (e0 < e < e1)

c0 c1 c2 c3

p0 e1 p1

e0 e e2

rightChildOfe

(c) After inserting e (e1 < e < e2)

c0 c1 c2

c3

p0 e1 p1

e0 e e2

rightChildOfe
(d) After inserting e (e2 < e)

c0 c1 c2 c3

p0 e1 p1

e0 e2 e

rightChildOfe

M42_LIAN0182_11_SE_C42.indd 6 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.5 Deleting an Element from a 2–4 tree 42-7

Case 1: u is a leaf 3-node or 4-node. Delete e from u.
Case 2: u is a leaf 2-node. Delete e from u. Now u is empty. This situation is known as

underflow. To remedy an underflow, consider two subcases:
Case 2.1: u’s immediate left or right sibling is a 3- or 4-node. Let the node be w, as shown

in Figure 42.10(a) (assume w is a left sibling of u). Perform a transfer operation that moves
an element from parentOfu to u, as shown in Figure 42.10(b), and move an element from w to
replace the moved element in parentOfu, as shown in Figure 42.10(c).

Figure 42.9 The tree changes after 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24 are added into an empty tree.

root in null 34 3 34 3 34 50

34

3 20 50 3 15 20 50

34

(a) (b) (c) (d) (e) (f)

(h)

15 34

3 5016 20 25

(g)

15 34

3 5016 20

(i)

15 20 34

3 5016 25 27

(j)

15 20 34

3 5016 25 27 29

(k)

15

20

3 16

27 34

502924 25

Figure 42.10 The transfer operation fills the empty node u.

(a) u is now empty (b) Move p1 to u (c) Move e1 to replace p1

parentOfu

w u

p0 p1 p2

e0 e1

parentOfu

w up1

p0 p2

e0 e1

parentOfu

w u

p0 e1 p2

e0 p1

Case 2.2: Both u’s immediate left and right siblings are 2-node if they exist (u may have
only one sibling). Let the node be w, as shown in Figure 42.11(a) (assume w is a left sibling of
u). Perform a fusion operation that discards u and moves an element from parentOfu to w, as
shown in Figure 42.11(b). If parentOfu becomes empty, repeat Case 2 recursively to perform
a transfer or a fusion on parentOfu.

Figure 42.11 The fusion operation discards the empty node u.

(a) w is a 2-node (b) Move p1 to w

parentOfu

w u

p0 p1 p2

e0

parentOfu

w

p0 p2

e0 p1

M42_LIAN0182_11_SE_C42.indd 7 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-8 Chapter 42 2–4 Trees and B-Trees

Case 3: u is a nonleaf node. Find the rightmost leaf node in the left subtree of e. Let this
node be w, as shown in Figure 42.12(a). Move the last element in w to replace e in u, as shown
in Figure 42.12(b). If w becomes empty, apply a transfer or fusion operation on w.

Listing 42.3 describes the algorithm for deleting an element.

Figure 42.12 An element in the internal node is replaced by an element in a leaf node.

u

v0 v1w

root

….. …..…..

….. …..…..

e0 v1 e2u

v0w

root

….. …..…..

….. …..…..

e0 e e2

(a) e is in u (b) Replace e with v1

Listing 42.3 Deleting an Element from a 2–4 tree
 1 /** Delete the specified element from the tree */
 2 public boolean delete(E e) {
 3 Locate the node that contains the element e
 4 if (the node is found) {
 5 delete(e, node); // Delete element e from the node
 6 size−−; // After one element deleted
 7 return true; // Element deleted successfully
 8 }
 9
10 return false; // Element not in the tree
11 }
12
13 /** Delete the specified element from the node */
14 private void delete(E e, Tree24Node<E> node) {
15 if (e is in a leaf node) {
16 // Get the path that leads to e from the root
17 ArrayList<Tree24Node<E>> path = path(e);
18
19 Remove e from the node;
20
21 // Check node for underflow along the path and fix it
22 validate(e, node, path); // Check underflow node
23 }
24 else { // e is in an internal node
25 Locate the rightmost node in the left subtree of node u;
26 Get the rightmost element from the rightmost node;
27
28 // Get the path that leads to e from the root
29 ArrayList<Tree24Node<E>> path = path(rightmostElement);
30
31 Replace the element in the node with the rightmost element
32

M42_LIAN0182_11_SE_C42.indd 8 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.5 Deleting an Element from a 2–4 tree 42-9

33 // Check node for underflow along the path and fix it
34 validate(rightmostElement, rightmostNode, path);
35 }
36 }
37
38 /** Perform a transfer or fusion operation if necessary */
39 private void validate(E e, Tree24Node<E> u,
40 ArrayList<Tree24Node<E>> path) {
41 for (int i = path.size() − 1; i >= 0; i−−) {
42 if (u is not empty)
43 return; // Done, no need to perform transfer or fusion
44
45 Tree24Node<E> parentOfu = path.get(i − 1); // Get parent of u
46
47 // Check two siblings
48 if (left sibling of u has more than one element) {
49 Perform a transfer on u with its left sibling
50 }
51 else if (right sibling of u has more than one element) {
52 Perform a transfer on u with its right sibling
53 }
54 else if (u has left sibling) { // Fusion with a left sibling
55 Perform a fusion on u with its left sibling
56 u = parentOfu; // Back to the loop to check the parent node
57 }
58 else { // Fusion with right sibling (right sibling must exist)
59 Perform a fusion on u with its right sibling
60 u = parentOfu; // Back to the loop to check the parent node
61 }
62 }
63 }

The delete(E e) method locates the node that contains the element e and invokes the
delete(E e, Tree24Node<E> node) method (line 5) to delete the element from the node.

If the node is a leaf node, get the path that leads to e from the root (line 17), delete e from
the node (line 19), and invoke validate to check and fix the empty node (line 22). The
validate(E e, Tree24Node<E> u, ArrayList<Tree24Node<E>> path) method
performs a transfer or fusion operation if the node is empty. Since these operations may cause
the parent of node u to become empty, a path is obtained in order to obtain the parents along
the path from the root to node u, as shown in Figure 42.13.

If the node is a nonleaf node, locate the rightmost element in the left subtree of the node
(lines 25–26), get the path that leads to the rightmost element from the root (line 29), replace

Figure 42.13 The nodes along the path may become empty as result of a transfer and
fusion operation.

u

root

parentOfu

M42_LIAN0182_11_SE_C42.indd 9 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-10 Chapter 42 2–4 Trees and B-Trees

e in the node with the rightmost element (line 31), and invoke validate to fix the rightmost
node if it is empty (line 34).

The validate(E e, Tree24Node<E> u, ArrayList<Tree24Node<E>> path)
checks whether u is empty and performs a transfer or fusion operation to fix the empty node.
The validate method exits when node is not empty (line 43). Otherwise, consider one of
the following cases:

1. If u has a left sibling with more than one element, perform a transfer on u with its left
sibling (line 49).

2. Otherwise, if u has a right sibling with more than one element, perform a transfer on u
with its right sibling (line 52).

3. Otherwise, if u has a left sibling, perform a fusion on u with its left sibling (line 55) and
reset u to parentOfu (line 56).

4. Otherwise, u must have a right sibling. Perform a fusion on u with its right sibling
(line 59) and reset u to parentOfu (line 60).

Only one of the preceding cases is executed. Afterward, a new iteration starts to perform a
transfer or fusion operation on a new node u if needed. Figure 42.14 shows the steps of deleting
elements 20, 15, 3, 6, and 34 that are deleted from a 2–4 tree in Figure 42.9(k).

 42.5.1 How do you search an element in a 2–4 tree?

 42.5.2 How do you insert an element into a 2–4 tree?

 42.5.3 How do you delete an element from a 2–4 tree?

 42.5.4 Show the change of a 2–4 tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 into
it, in this order.

Point
Check

(a) Delete 20

15

20

3 16

27 34

502924 25

(b) Replace 20 with 16

15

3

16

27 34

502924 25

3 15

16

27 34

502924 25

(c) Perform a fusion

3 15

27

16 34

502924 25

(d) Perform a transfer

3
15

27

16 34

502924 25

(e) Delete 15
3

27

16 34

502924 25

(f) Delete 3

M42_LIAN0182_11_SE_C42.indd 10 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.7 Implementing the Tree24 Class 42-11

 42.5.5 For the tree built in the preceding question, show the change of the tree after delet-
ing 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 from it, in this order.

 42.5.6 Show the change of a B-tree of order 6 when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, 6,
17, 25, 18, 26, 14, 52, 63, 74, 80, 19, and 27 into it, in this order.

 42.5.7 For the tree built in the preceding question, show the change of the tree after delet-
ing 1, 2, 3, 4, 10, 9, 7, 5, and 8, and 6 from it, in this order.

42.6 Traversing Elements in a 2–4 tree
You can perform inorder, preorder, and postorder for traversing the elements in a 2–4 tree.

Inorder, preorder, and postorder traversals are useful for 2–4 trees. Inorder traversal visits the
elements in increasing order. Preorder traversal visits the elements in the root, then recursively
visits the subtrees from the left to right. Postorder traversal visits the subtrees from the left to
right recursively, and then the elements in the root.

For example, in the 2–4 tree in Figure 42.9(k), the inorder traversal is
3 15 16 20 24 25 27 29 34 50

The preorder traversal is
20 15 3 16 27 34 24 25 29 50

The postorder traversal is
3 16 1 24 25 29 50 27 34 20

42.7 Implementing the Tree24 Class
This section gives the complete implementation for the Tree24 class.

Listing 42.4 gives the complete source code for the Tree24 class.

Point
Key

Point
Key

Figure 42.14 The tree changes after 20, 15, 3, 6, and 34 are deleted from a 2–4 tree.

16

27

24 34

5029 25

(g) Perform a transfer

27

34

502924 25

(i) Perform a fusion

16

27

24 34

5029 25

(h) Delete 16

27 34

502924 25

(j) Perform a fusion

(k) Delete 34

27

502924 25

34

(l) Replace 34 with 16 (m) Perform a fusion

27 29

5024 25

27

24 25 29 50

M42_LIAN0182_11_SE_C42.indd 11 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-12 Chapter 42 2–4 Trees and B-Trees

Listing 42.4 Tree24.java
 1 import java.util.ArrayList;
 2
 3 public class Tree24<E extends Comparable<E>> implements Tree<E> {
 4 private Tree24Node<E> root;
 5 private int size;
 6
 7 /** Create a default 2–4 tree */
 8 public Tree24() {
 9 }
 10
 11 /** Create a 2–4 tree from an array of objects */
 12 public Tree24(E[] elements) {
 13 for (int i = 0; i < elements.length; i++)
 14 insert(elements[i]);
 15 }
 16
 17 @Override /* Search an element in the tree */
 18 public boolean search(E e) {
 19 Tree24Node<E> current = root; // Start from the root
 20
 21 while (current != null) {
 22 if (matched(e, current)) { // Element is in the node
 23 return true; // Element found
 24 }
 25 else {
 26 current = getChildNode(e, current); // Search in a subtree
 27 }
 28 }
 29
 30 return false; // Element is not in the tree
 31 }
 32
 33 /** Return true if the element is found in this node */
 34 private boolean matched(E e, Tree24Node<E> node) {
 35 for (int i = 0; i < node.elements.size(); i++)
 36 if (node.elements.get(i).equals(e))
 37 return true; // Element found
 38
 39 return false; // No match in this node
 40 }
 41
 42 /** Locate a child node to search element e */
 43 private Tree24Node<E> getChildNode(E e, Tree24Node<E> node) {
 44 if (node.child.size() == 0)
 45 return null; // node is a leaf
 46
 47 int i = locate(e, node); // Locate the insertion point for e
 48 return node.child.get(i); // Return the child node
 49 }
 50
 51 @Override /** Insert element e into the tree
 52 * Return true if the element is inserted successfully
 53 */
 54 public boolean insert(E e) {
 55 if (root == null)
 56 root = new Tree24Node<E>(e); // Create a new root for element
 57 else {
 58 // Locate the leaf node for inserting e
 59 Tree24Node<E> leafNode = null;

M42_LIAN0182_11_SE_C42.indd 12 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.7 Implementing the Tree24 Class 42-13

 60 Tree24Node<E> current = root;
 61 while (current != null)
 62 if (matched(e, current)) {
 63 return false; // Duplicate element found, nothing inserted
 64 }
 65 else {
 66 leafNode = current;
 67 current = getChildNode(e, current);
 68 }
 69
 70 // Insert the element e into the leaf node
 71 insert(e, null, leafNode); // The right child of e is null
 72 }
 73
 74 size++; // Increase size
 75 return true; // Element inserted
 76 }
 77
 78 /** Insert element e into node u */
 79 private void insert(E e, Tree24Node<E> rightChildOfe,
 80 Tree24Node<E> u) {
 81 // Get the search path that leads to element e
 82 ArrayList<Tree24Node<E>> path = path(e);
 83
 84 for (int i = path.size() − 1; i >= 0; i−−) {
 85 if (u.elements.size() < 3) { // u is a 2-node or 3-node
 86 insert23(e, rightChildOfe, u); // Insert e to node u
 87 break; // No further insertion to u's parent needed
 88 }
 89 else {
 90 Tree24Node<E> v = new Tree24Node<E>(); // Create a new node
 91 E median = split(e, rightChildOfe, u, v); // Split u
 92
 93 if (u == root) {
 94 root = new Tree24Node<E>(median); // New root
 95 root.child.add(u); // u is the left child of median
 96 root.child.add(v); // v is the right child of median
 97 break; // No further insertion to u's parent needed
 98 }
 99 else {
100 // Use new values for the next iteration in the for loop
101 e = median; // Element to be inserted to parent
102 rightChildOfe = v; // Right child of the element
103 u = path.get(i − 1); // New node to insert element
104 }
105 }
106 }
107 }
108
109 /** Insert element to a 2- or 3- and return the insertion point */
110 private void insert23(E e, Tree24Node<E> rightChildOfe,
111 Tree24Node<E> node) {
112 int i = this.locate(e, node); // Locate where to insert
113 node.elements.add(i, e); // Insert the element into the node
114 if (rightChildOfe != null)
115 node.child.add(i + 1, rightChildOfe); // Insert the child link
116 }
117
118 /** Split a 4-node u into u and v and insert e to u or v */
119 private E split(E e, Tree24Node<E> rightChildOfe,

M42_LIAN0182_11_SE_C42.indd 13 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-14 Chapter 42 2–4 Trees and B-Trees

120 Tree24Node<E> u, Tree24Node<E> v) {
121 // Move the last element in node u to node v
122 v.elements.add(u.elements.remove(2));
123 E median = u.elements.remove(1);
124
125 // Split children for a nonleaf node
126 // Move the last two children in node u to node v
127 if (u.child.size() = 0) {
128 v.child.add(u.child.remove(2));
129 v.child.add(u.child.remove(2));
130 }
131
132 // Insert e into a 2- or 3- node u or v.
133 if (e.compareTo(median) < 0)
134 insert23(e, rightChildOfe, u);
135 else
136 insert23(e, rightChildOfe, v);
137
138 return median; // Return the median element
139 }
140
141 /** Return a search path that leads to element e */
142 private ArrayList<Tree24Node<E>= path(E e) {
143 ArrayList<Tree24Node<E>= list = new ArrayList<Tree24Node<E>=();
144 Tree24Node<E> current = root; // Start from the root
145
146 while (current != null) {
147 list.add(current); // Add the node to the list
148 if (matched(e, current)) {
149 break; // Element found
150 }
151 else {
152 current = getChildNode(e, current);
153 }
154 }
155
156 return list; // Return an array of nodes
157 }
158
159 @Override /** Delete the specified element from the tree */
160 public boolean delete(E e) {
161 // Locate the node that contains the element e
162 Tree24Node<E> node = root;
163 while (node != null)
164 if (matched(e, node)) {
165 delete(e, node); // Delete element e from node
166 size−−; // After one element deleted
167 return true; // Element deleted successfully
168 }
169 else {
170 node = getChildNode(e, node);
171 }
172
173 return false; // Element not in the tree
174 }
175
176 /** Delete the specified element from the node */
177 private void delete(E e, Tree24Node<E> node) {
178 if (node.child.size() == 0) { // e is in a leaf node
179 // Get the path that leads to e from the root
180 ArrayList<Tree24Node<E>> path = path(e);

M42_LIAN0182_11_SE_C42.indd 14 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.7 Implementing the Tree24 Class 42-15

181
182 node.elements.remove(e); // Remove element e
183
184 if (node == root) { // Special case
185 if (node.elements.size() == 0)
186 root = null; // Empty tree
187 return; // Done
188 }
189
190 validate(e, node, path); // Check underflow node
191 }
192 else { // e is in an internal node
193 // Locate the rightmost node in the left subtree of the node
194 int index = locate(e, node); // Index of e in node
195 Tree24Node<E> current = node.child.get(index);
196 while (current.child.size() > 0) {
197 current = current.child.get(current.child.size() − 1);
198 }
199 E rightmostElement =
200 current.elements.get(current.elements.size() − 1);
201
202 // Get the path that leads to e from the root
203 ArrayList<Tree24Node<E>= path = path(rightmostElement);
204
205 // Replace the deleted element with the rightmost element
206 node.elements.set(index, current.elements.remove(
207 current.elements.size() − 1));
208
209 validate(rightmostElement, current, path); // Check underflow
210 }
211 }
212
213 /** Perform transfer and confusion operations if necessary */
214 private void validate(E e, Tree24Node<E> u,
215 ArrayList<Tree24Node<E>> path) {
216 for (int i = path.size() − 1; u.elements.size() == 0; i−−) {
217 Tree24Node<E> parentOfu = path.get(i − 1); // Get parent of u
218 int k = locate(e, parentOfu); // Index of e in the parent node
219
220 // Check two siblings
221 if (k > 0 && parentOfu.child.get(k − 1).elements.size() > 1) {
222 leftSiblingTransfer(k, u, parentOfu);
223 }
224 else if (k + 1 < parentOfu.child.size() &&
225 parentOfu.child.get(k + 1).elements.size() > 1) {
226 rightSiblingTransfer(k, u, parentOfu);
227 }
228 else if (k − 1 == 0) { // Fusion with a left sibling
229 // Get left sibling of node u
230 Tree24Node<E> leftNode = parentOfu.child.get(k − 1);
231
232 // Perform a fusion with left sibling on node u
233 leftSiblingFusion(k, leftNode, u, parentOfu);
234
235 // Done when root becomes empty
236 if (parentOfu == root && parentOfu.elements.size() == 0) {
237 root = leftNode;
238 break;
239 }
240
241 u = parentOfu; // Back to the loop to check the parent node

M42_LIAN0182_11_SE_C42.indd 15 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-16 Chapter 42 2–4 Trees and B-Trees

242 }
243 else { // Fusion with right sibling (right sibling must exist)
244 // Get left sibling of node u
245 Tree24Node<E> rightNode = parentOfu.child.get(k + 1);
246
247 // Perform a fusion with right sibling on node u
248 rightSiblingFusion(k, rightNode, u, parentOfu);
249
250 // Done when root becomes empty
251 if (parentOfu == root && parentOfu.elements.size() == 0) {
252 root = rightNode;
253 break;
254 }
255
256 u = parentOfu; // Back to the loop to check the parent node
257 }
258 }
259 }
260
261 /** Locate the insertion point of the element in the node */
262 private int locate(E o, Tree24Node<E> node) {
263 for (int i = 0; i < node.elements.size(); i++) {
264 if (o.compareTo(node.elements.get(i)) <= 0) {
265 return i;
266 }
267 }
268
269 return node.elements.size();
270 }
271
272 /** Perform a transfer with a left sibling */
273 private void leftSiblingTransfer(int k,
274 Tree24Node<E> u, Tree24Node<E> parentOfu) {
275 // Move an element from the parent to u
276 u.elements.add(0, parentOfu.elements.get(k − 1));
277
278 // Move an element from the left node to the parent
279 Tree24Node<E> leftNode = parentOfu.child.get(k − 1);
280 parentOfu.elements.set(k − 1,
281 leftNode.elements.remove(leftNode.elements.size() − 1));
282
283 // Move the child link from left sibling to the node
284 if (leftNode.child.size() > 0)
285 u.child.add(0, leftNode.child.remove(
286 leftNode.child.size() − 1));
287 }
288
289 /** Perform a transfer with a right sibling */
290 private void rightSiblingTransfer(int k,
291 Tree24Node<E> u, Tree24Node<E> parentOfu) {
292 // Transfer an element from the parent to u
293 u.elements.add(parentOfu.elements.get(k));
294
295 // Transfer an element from the right node to the parent
296 Tree24Node<E> rightNode = parentOfu.child.get(k + 1);
297 parentOfu.elements.set(k, rightNode.elements.remove(0));
298
299 // Move the child link from right sibling to the node
300 if (rightNode.child.size() > 0)
301 u.child.add(rightNode.child.remove(0));
302 }

M42_LIAN0182_11_SE_C42.indd 16 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.7 Implementing the Tree24 Class 42-17

303
304 /** Perform a fusion with a left sibling */
305 private void leftSiblingFusion(int k, Tree24Node<E> leftNode,
306 Tree24Node<E> u, Tree24Node<E> parentOfu) {
307 // Transfer an element from the parent to the left sibling
308 leftNode.elements.add(parentOfu.elements.remove(k − 1));
309
310 // Remove the link to the empty node
311 parentOfu.child.remove(k);
312
313 // Adjust child links for nonleaf node
314 if (u.child.size() > 0)
315 leftNode.child.add(u.child.remove(0));
316 }
317
318 /** Perform a fusion with a right sibling */
319 private void rightSiblingFusion(int k, Tree24Node<E> rightNode,
320 Tree24Node<E> u, Tree24Node<E> parentOfu) {
321 // Transfer an element from the parent to the right sibling
322 rightNode.elements.add(0, parentOfu.elements.remove(k));
323
324 // Remove the link to the empty node
325 parentOfu.child.remove(k);
326
327 // Adjust child links for nonleaf node
328 if (u.child.size() > 0)
329 rightNode.child.add(0, u.child.remove(0));
330 }
331
332 /** Get the number of nodes in the tree */
333 public int getSize() {
334 return size;
335 }
336
337 /** Preorder traversal from the root */
338 public void preorder() {
339 preorder(root);
340 }
341
342 /** Preorder traversal from a subtree */
343 private void preorder(Tree24Node<E> root) {
344 if (root == null)return;
345 for (int i = 0; i < root.elements.size(); i++)
346 System.out.print(root.elements.get(i) + " ");
347
348 for (int i = 0; i < root.child.size(); i++)
349 preorder(root.child.get(i));
350 }
351
352 /** Inorder traversal from the root*/
353 public void inorder() {
354 // Left as exercise
355 }
356
357 /** Postorder traversal from the root */
358 public void postorder() {
359 // Left as exercise
360 }
361
362 /** Return true if the tree is empty */
363 public boolean isEmpty() {

M42_LIAN0182_11_SE_C42.indd 17 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-18 Chapter 42 2–4 Trees and B-Trees

364 return root == null;
365 }
366
367 @Override /** Remove all elements from the tree */
368 public void clear() {
369 root = null;
370 size = 0;
371 }
372
373 /** Return an iterator to traverse elements in the tree */
374 public java.util.Iterator iterator() {
375 // Left as exercise
376 return null;
377 }
378
379 /** Define a 2–4 tree node */
380 protected static class Tree24Node<E extends Comparable<E>> {
381 // elements has maximum three values
382 ArrayList<E> elements = new ArrayList<E>(3);
383 // Each has maximum four childres
384 ArrayList<Tree24Node<E>> child
385 = new ArrayList<Tree24Node<E>>(4);
386
387 /** Create an empty Tree24 node */
388 Tree24Node() {
389 }
390
391 /** Create a Tree24 node with an initial element */
392 Tree24Node(E o) {
393 elements.add(o);
394 }
395 }
396 }

The Tree24 class contains the data fields root and size (lines 4–5). root references the root
node and size stores the number of elements in the tree.

The Tree24 class has two constructors: a no-arg constructor (lines 8–9) that constructs
an empty tree and a constructor that creates an initial Tree24 from an array of elements
(lines 12–15).

The search method (lines 18–31) searches an element in the tree. It returns true (line 23)
if the element is in the tree and returns false if the search arrives at an empty subtree (line 30).

The matched(e, node) method (lines 34–40) checks where the element e is in the node.
The getChildNode(e, node) method (lines 43–49) returns the root of a subtree where

e should be searched.
The insert(E e) method inserts an element in a tree (lines 54–76). If the tree is empty,

a new root is created (line 56). The method locates a leaf node in which the element will be
inserted and invokes insert(e, null, leafNode) to insert the element (line 71).

The insert(e, rightChildOfe, u) method inserts an element into node u (lines
79–107). The method first invokes path(e) (line 82) to obtain a search path from the root to
node u. Each iteration of the for loop considers u and its parent parentOfu (lines 84–106).
If u is a 2-node or 3-node, invoke insert23(e, rightChildOfe, u) to insert e and its
child link rightChildOfe into u (line 86). No split is needed (line 87). Otherwise, create a
new node v (line 90) and invoke split(e, rightChildOfe, u, v) (line 91) to split u
into u and v. The split method inserts e into either u and v and returns the median in the
original u. If u is the root, create a new root to hold median, and set u and v as the left and
right children for median (lines 95–96). If u is not the root, insert median to parentOfu in
the next iteration (lines 101–103).

M42_LIAN0182_11_SE_C42.indd 18 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.8 Testing the Tree24 Class 42-19

The insert23(e, rightChildOfe, node) method inserts e along with the reference
to its right child into the node (lines 110–116). The method first invokes locate(e, node)
(line 112) to locate an insertion point, then insert e into the node (line 113). If rightChildOfe
is not null, it is inserted into the child list of the node (line 115).

The split(e, rightChildOfe, u, v) method splits a 4-node u (lines 119-139). This is
accomplished as follows: (1) move the last element from u to v and remove the median element
from u (lines 122–123); (2) move the last two child links from u to v (lines 127–130) if u is a
nonleaf node; (3) if e < median, insert e into u; otherwise, insert e into v (lines 133–136);
and (4) return median (line 138).

The path(e) method returns an ArrayList of nodes searched from the root in order to
locate e (lines 142–157). If e is in the tree, the last node in the path contains e. Otherwise, the
last node is where e should be inserted.

The delete(E e) method deletes an element from the tree (lines 160–174). The method
first locates the node that contains e and invokes delete(e, node) to delete e from the node
(line 165). If the element is not in the tree, return false (line 173).

The delete(e, node) method deletes an element from node u (lines 177–211). If the
node is a leaf node, obtain the path that leads to e (line 180), delete e (line 182), set root to
null if the tree becomes empty (lines 184–188), and invoke validate to apply transfer and
fusion operation on empty nodes (line 190). If the node is a nonleaf node, locate the rightmost
element (lines 194–200), obtain the path that leads to e (line 203), replace e with the rightmost
element (lines 206–207), and invoke validate to apply transfer and fusion operations on
empty nodes (line 209).

The validate(e, u, path) method ensures that the tree is a valid 2–4 tree (lines
214–259). The for loop terminates when u is not empty (line 216). The loop body is executed
to fix the empty node u by performing a transfer or fusion operation. If a left sibling with more
than one element exists, perform a transfer on u with the left sibling (line 222). Otherwise, if
a right sibling with more than one element exists, perform a transfer on u with the left sibling
(line 226). Otherwise, if a left sibling exists, perform a fusion on u with the left sibling (lines
230–239), and validate parentOfu in the next loop iteration (line 241). Otherwise, perform
a fusion on u with the right sibling.

The locate(e, node) method locates the index of e in the node (lines 262–270).
The leftSiblingTransfer(k, u, parentOfu) method performs a transfer on u with

its left sibling (lines 273–287). The rightSiblingTransfer(k, u, parentOfu) method
performs a transfer on u with its right sibling (lines 290–302). The leftSiblingFusion(k,
leftNode, u, parentOfu) method performs a fusion on u with its left sibling leftNode
(lines 305–316). The rightSiblingFusion(k, rightNode, u, parentOfu) method
performs a fusion on u with its right sibling rightNode (lines 319–330).

The preorder() method displays all the elements in the tree in preorder (lines 338–350).
The inner class Tree24Node defines a class for a node in the tree (lines 374–389).

42.8 Testing the Tree24 Class
This section writes a test program for using the Tree24 class.

Listing 42.5 gives a test program. The program creates a 2–4 tree and inserts elements in
lines 6–20, and deletes elements in lines 22–56.

Listing 42.5 TestTree24.java
 1 public class TestTree24 {
 2 public static void main(String[] args) {
 3 // Create a 2–4 tree
 4 Tree24<Integer> tree = new Tree24<Integer>();
 5

Point
Key

M42_LIAN0182_11_SE_C42.indd 19 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-20 Chapter 42 2–4 Trees and B-Trees

 6 tree.insert(34);
 7 tree.insert(3);
 8 tree.insert(50);
 9 tree.insert(20);
10 tree.insert(15);
11 tree.insert(16);
12 tree.insert(25);
13 tree.insert(27);
14 tree.insert(29);
15 tree.insert(24);
16 System.out.print("\nAfter inserting 24:");
17 printTree(tree);
18 tree.insert(23);
19 tree.insert(22);
20 tree.insert(60);
21 tree.insert(70);
22 System.out.print("\nAfter inserting 70:");
23 printTree(tree);
24
25 tree.delete(34);
26 System.out.print("\nAfter deleting 34:");
27 printTree(tree);
28
29 tree.delete(25);
30 System.out.print("\nAfter deleting 25:");
31 printTree(tree);
32
33 tree.delete(50);
34 System.out.print("\nAfter deleting 50:");
35 printTree(tree);
36
37 tree.delete(16);
38 System.out.print("\nAfter deleting 16:");
39 printTree(tree);
40
41 tree.delete(3);
42 System.out.print("\nAfter deleting 3:");
43 printTree(tree);
44
45 tree.delete(15);
46 System.out.print("\nAfter deleting 15:");
47 printTree(tree);
48 }
49
50 public static <E extends Comparable<E>>
51 void printTree(Tree<E> tree) {
52 // Traverse tree
53 System.out.print("\nPreorder: ");
54 tree.preorder();
55 System.out.print("\nThe number of nodes is " + tree.getSize());
56 System.out.println();
57 }
58 }

M42_LIAN0182_11_SE_C42.indd 20 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.10 B-Tree 42-21

After inserting 24:

Preorder: 20 15 3 16 27 34 24 25 29 50
The number of nodes is 10

After inserting 70:
Preorder: 20 15 3 16 24 27 34 22 23 25 29 50 60 70
The number of nodes is 14

After deleting 34:
Preorder: 20 15 3 16 24 27 50 22 23 25 29 60 70
The number of nodes is 13

After deleting 25:
Preorder: 20 15 3 16 23 27 50 22 24 29 60 70
The number of nodes is 12

After deleting 50:
Preorder: 20 15 3 16 23 27 60 22 24 29 70
The number of nodes is 11

After deleting 16:
Preorder: 23 20 3 15 22 27 60 24 29 70
The number of nodes is 10

After deleting 3:
Preorder: 23 20 15 22 27 60 24 29 70
The number of nodes is 9

After deleting 15:
Preorder: 27 23 20 22 24 60 29 70
The number of nodes is 8

Figure 42.15 shows how the tree evolves as elements are added. After 34, 3, 50, 20, 15, 16, 25, 27,
29, and 24 are added to the tree, it is as shown in Figure 42.15(a). After inserting 23, 22, 60, and
70, the tree is as shown in Figure 42.15(b). After deleting 34, the tree is as shown in Figure 42.15(c).
After deleting 25, the tree is as shown in Figure 42.15(d). After deleting 50, the tree is as shown in
Figure 42.15(e). After deleting 16, the tree is as shown in Figure 42.15(f). After deleting 3, the tree
is as shown in Figure 42.15(g). After deleting 15, the tree is as shown in Figure 42.15(h).

42.9 Time-Complexity Analysis
Search, insertion, and deletion operations take O(logn) time in a 2–4 tree.

Since a 2–4 tree is a completely balanced binary tree, its height is at most O(log n). The
search, insert, and delete methods operate on the nodes along a path in the tree. It takes a
constant time to search an element within a node. So, the search method takes O(log n) time.
For the insert method, the time for splitting a node takes a constant time. So, the insert
method takes O(log n) time. For the delete method, it takes a constant time to perform a
transfer and fusion operation. So, the delete method takes O(log n) time.

42.10 B-Tree
A B-tree is a generalization of a 2–4 tree.

So far we assume the entire data set is stored in main memory. What if the data set is too large
and cannot fit in the main memory, as in the case with most databases, where data is stored
on disks? Suppose you use an AVL tree to organize a million records in a database table. To
find a record, the average number of nodes traversed is log 2 1 ,0 0 0 ,0 0 0 ≈ 2 0 . This is fine

Point
Key

Point
Key

M42_LIAN0182_11_SE_C42.indd 21 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-22 Chapter 42 2–4 Trees and B-Trees

(a) After inserting 34, 3, 50, 20, 15, 16, 25, 27, 29, and 24, in this order

(b) After inserting 23, 22, 60, and 70

3

15

16 24 25

27 34

50

20

29

3

15

16 22 23

24 27 34

50 60 70

20

25 29

(c) After deleting 34

3

15

16 22 23

24 27 50

60 70

20

25 29

(d) After deleting 25

3

15

16 22

23 27 50

60 70

20

24 29

(e) After deleting 50

3

15

16 22

23 27 60

70

20

24 29

if all nodes are stored in main memory. However, for nodes stored on a disk, this means 20
disk reads. Disk I/O is expensive, and it is thousands of times slower than memory access. To
improve performance, we need to reduce the number of disk I/Os. An efficient data structure
for performing search, insertion, and deletion for data stored on secondary storage such as hard
disks is the B-tree, which is a generalization of the 2–4 tree.

M42_LIAN0182_11_SE_C42.indd 22 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.10 B-Tree 42-23

Figure 42.16 In a B-tree of order 6, each node except the root may contain between 2 and 5 keys.

3 6

8 13

9 10 15 16

18 43

20 26 27 31 32 35 36 37 45 46 47 49 50 75 76 77 78 79

28 33 48 53 65

59 60

Figure 42.15 The tree evolves as elements are inserted and deleted.

(f) After deleting 16

3 15

20

22

27 60

70

23

24 29

(g) After deleting 3

15

20

22

27 60

70

23

24 29

(h) After deleting 15

20 22

23

24

60

70

27

29

A B-tree of order d is defined as follows:

1. Each node except the root contains between <d/2= - 1 and d - 1 keys.

2. The root may contain up to d - 1 keys.

3. A nonleaf node with k keys has k + 1 children.

4. All leaf nodes have the same depth.

Figure 42.16 shows a B-tree of order 6. For simplicity, we use integers to represent keys.
Each key is associated with a pointer that points to the actual record in the database. For sim-
plicity, the pointers to the records in the database are omitted in the figure.

M42_LIAN0182_11_SE_C42.indd 23 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-24 Chapter 42 2–4 Trees and B-Trees

The basic unit of the IO operations on a disk is a block. When you read data from a disk, the
whole block that contains the data is read. You should choose an appropriate order d so that a
node can fit in a single disk block. This will minimize the number of disk IOs.

A 2–4 tree is actually a B-tree of order 4. The techniques for insertion and deletion in a 2–4
tree can be easily generalized for a B-tree.

Inserting a key to a B-tree is similar to what was done for a 2–4 tree. First, locate the leaf
node in which the key will be inserted. Insert the key to the node. After the insertion, if the leaf
node has d keys, an overflow occurs. To resolve overflow, perform a split operation similar to
the one used in a 2–4 tree, as follows:

Let u denote the node needed to be split and let m denote the median key in the node.
Create a new node and move all keys greater than m to this new node. Insert m to the parent
node of u. Now u becomes the left child of m and v becomes the right child of m, as shown in
Figure 42.18. If inserting m into the parent node of u causes an overflow, repeat the same split
process on the parent node.

Figure 42.18 (a) After inserting a new key to node u. (b) The median key k p is inserted to
parentOfu.

k1 k2 … kd

parentOfu

u

…

k1 … kp–1

parentOfu

u

… kp …

kp+1 …kd new node

Figure 42.19 The transfer operation transfers a key from the parentOfu to u and transfers a key from u ’s sibling
parentOfu.

… j

... i …

w u

parentOfu

… k … j

.. . …

w u

parentOfu

i … k …

... j…

w u

parentOfu

i … k

(a) Before a transfer is performed (b) Key i moved to node u (c) Key j moved to parentOfu

Figure 42.17 The keys in the left (right) subtree of key k i are less than (greater than) k i.

k1 k2 … ki …

left subtree right subtree

Note that a B-tree is a search tree. The keys in each node are placed in increasing order.
Each key in an interior node has a left subtree and a right subtree, as shown in Figure 42.17.
All keys in the left subtree are less than the key in the parent node, and all keys in the right
subtree are greater than the key in the parent node.

A key k can be deleted from a B-tree in the same way as in a 2–4 tree. First locate the node
u that contains the key. Consider two cases:

Case 1: If u is a leaf node, remove the key from u. After the removal, if u has less than
<d/2= - 1 keys, an underflow occurs. To remedy an underflow, perform a transfer with a sibling

M42_LIAN0182_11_SE_C42.indd 24 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42.10 B-Tree 42-25

Case 2: u is a nonleaf node. Find the rightmost leaf node in the left subtree of k. Let this
node be w, as shown in Figure 42.21(a). Move the last key in w to replace k in u, as shown in
Figure 42.21(b). If w becomes underflow, apply a transfer or fusion operation on w.

Figure 42.20 The fusion operation moves key i from the parentOfu u to w and moves all
keys in u to w.

… j

 ... i …

w u

parentOfu

… k … j i … k

.. . …

w

parentOfu

(a) Before a fusion is performed (b) After a fusion is performed

Figure 42.21 A key in the internal node is replaced by an element in a leaf node.

u

… iw

root

….. …..…..

….. …..…..

 … i …u

…w

root

….. …..…..

….. …..…..

(a) Key is in u (b) Replace key k with key i

 … k …

The performance of a B-tree depends on the number of disk IOs (i.e., the number of
nodes accessed). The number of nodes accessed for search, insertion, and deletion opera-
tions depends on the height of the tree. In the worst case, each node contains <d/2= -1 keys.
So, the height of the tree is log < d / 2 = n , where n is the number of keys. In the best case,
each node contains d - 1 keys. So, the height of the tree is log d n . Consider a B-tree of
order 12 for 10 million keys. The height of the tree is between log6 10,000,000 ≈ 7 and
log 1 2 1 0 ,0 0 0 ,0 0 0 ≈ 9 . So, for search, insertion, and deletion operations, the maximum
number of nodes visited is 42. If you use an AVL tree, the maximum number of nodes visited
is log 2 1 0 ,0 0 0 ,0 0 0 ≈ 2 4 .

Key Terms

2–3–4 tree 42-2
2–4 tree 42-2
2-node 42-2
3-node 42-2
4-node 42-2

B-tree 42-11
fusion operation 42-7
split operation 42-4
transfer operation 42-7

w of u that has more than <d/2= - 1 keys if such sibling exists, as shown in Figure 42.19.
Otherwise, perform a fusion with a sibling w of u, as shown in Figure 42.20.

M42_LIAN0182_11_SE_C42.indd 25 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

42-26 Chapter 42 2–4 Trees and B-Trees

ChapTer summary

1. A 2–4 tree is a completely balanced search tree. In a 2–4 tree, a node may have one,
two, or three elements.

2. Searching an element in a 2–4 tree is similar to searching an element in a binary tree.
The difference is that you have searched an element within a node.

3. To insert an element to a 2–4 tree, locate a leaf node in which the element will be
inserted. If the leaf node is a 2- or 3-node, simply insert the element into the node. If the
node is a 4-node, split the node.

4. The process of deleting an element from a 2–4 tree is similar to that of deleting an ele-
ment from a binary tree. The difference is that you have to perform transfer or fusion
operations for empty nodes.

5. The height of a 2–4 tree is O (logn). So, the time complexities for the search, insert, and
delete methods are O (logn).

6. A B-tree is a generalization of the 2–4 tree. Each node in a B-tree of order d can have
between <d/2= -1 and d - 1 keys except the root. 2–4 trees are flatter than AVL trees
and B-trees are flatter than 2–4 trees. B-trees are efficient for creating indexes for data
in database systems where large amounts of data are stored on disks.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

 *42.1 (Implement inorder) The inorder method in Tree24 is left as an exercise.
Implement it.

 42.2 (Implement postorder) The postorder method in Tree24 is left as an exercise.
Implement it.

 42.3 (Implement iterator) The iterator method in Tree24 is left as an exercise.
Implement it to iterate the elements using inorder.

 *42.4 (Display a 2–4 tree graphically) Write a GUI program that displays a 2–4 tree.

 ***42.5 (2–4 tree animation) Write a GUI program that animates the 2–4 tree insert,
delete, and search methods, as shown in Figure 42.4.

 **42.6 (Parent reference for Tree24) Redefine Tree24Node to add a reference to a node’s
parent, as shown below:

Tree24Node<E>

elements: ArrayList<E>

child: ArrayList<Tree24Node<E>>

parent: Tree24Node<E>

An array list for storing the elements.

An array list for storing the links to the child nodes.

Refers to the parent of this node.

+Tree24()

+Tree24(o: E)

Creates an empty tree node.

Creates a tree node with an initial element.

M42_LIAN0182_11_SE_C42.indd 26 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 42-27

 Add the following two new methods in Tree24:

public Tree24Node<E> getParent(Tree24Node<E> node)
 Returns the parent for the specified node.
public ArrayList<Tree24Node<E>> getPath(Tree24Node<E> node)
 Returns the path from the specified node to the root in an
array list.

 Write a test program that adds numbers 1, 2, ..., 100 to the tree and displays the
paths for all leaf nodes.

 ***42.7 (The BTree class) Design and implement a class for B-trees.

M42_LIAN0182_11_SE_C42.indd 27 5/29/17 10:16 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To know what a red-black tree is (§43.1).

■■ To convert a red-black tree to a 2–4 tree and vice versa (§43.2).

■■ To design the RBTree class that extends the BST class (§43.3).

■■ To insert an element in a red-black tree and resolve the double-red
violation if necessary (§43.4).

■■ To delete an element from a red-black tree and resolve the double-black
problem if necessary (§43.5).

■■ To implement and test the RBTree class (§§43.6–43.7).

■■ To compare the performance of AVL trees, 2–4 trees, and RBTree
(§43.8).

Red-Black Trees

CHAPTER

43

M43_LIAN0182_11_SE_C43.indd 1 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-2 Chapter 43 Red-Black Trees

43.1 Introduction
A red-black tree is a balanced binary search tree derived from a 2–4 tree. A red-black
tree corresponds to a 2-4 tree.

Each node in a red-black tree has a color attribute red or black, as shown in Figure 43.1(a).
A node is called external if its left or right subtree is empty. Note that a leaf node is exter-
nal, but an external node is not necessarily a leaf node. For example, node 25 is external,
but it is not a leaf. The black depth of a node is defined as the number of black nodes in a
path from the node to the root. For example, the black depth of node 25 is 2, and that of
node 27 is 2.

Note
The red nodes appear in blue in the text.

A red-black tree has the following properties:

1. The root is black.

2. Two adjacent nodes cannot be both red.

3. All external nodes have the same black depth.

The red-black tree in Figure 43.1(a) satisfies all three properties. A red-black tree can be
converted to a 2-4 tree, and vice versa. Figure 43.1(b) shows an equivalent 2-4 tree for the
red-black tree in Figure 43.1(a).

Figure 43.1 A red-black tree can be represented using a 2-4 tree, and vice versa.

20

15 34

3 16 25

27

50
15 20 34

3 25 27 5016

(a) A red-black tree (b) A 2-4 tree

Point
Key

43.2 Conversion between Red-Black Trees
and 2-4 Trees
This section discusses the correspondence between a red-black tree and a 2-4 tree.

You can design insertion and deletion algorithms for red-black trees without having knowledge
of 2-4 trees. However, the correspondence between red-black trees and 2-4 trees provides use-
ful intuition about the structure of red-black trees and operations. For this reason, this section
discusses the correspondence between these two types of trees.

To convert a red-black tree to a 2-4 tree, simply merge every red node with its parent to
create a 3-node or a 4-node. For example, the red nodes 15 and 34 are merged to their parent
to create a 4-node, and the red node 27 is merged to its parent to create a 3-node, as shown in
Figure 43.1(b).

Point
Key

M43_LIAN0182_11_SE_C43.indd 2 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.2 Conversion between Red-Black Trees and 2-4 Trees 43-3

To convert a 2-4 tree to a red-black tree, perform the following transformations for each node u:

1. If u is a 2-node, color it black, as shown in Figure 43.2(a).

2. If u is a 3-node with element values e0 and e1 , there are two ways to convert it. Either
make e0 the parent of e1 or make e1 the parent of e0 . In any case, color the parent black
and the child red, as shown in Figure 43.2(b).

3. If u is a 4-node with element values e0 , e1 , and e2 , make e1 the parent of e0 and e2 .
Color e1 black and e0 and e2 red, as shown in Figure 43.2(c).

Figure 43.2 A node in a 2-4 tree can be transformed to nodes in a red-black tree.

e

c0

c0

c0

c0

c0

c0

c0

c1

c1

c1

c1

2-3-4 Tree Equivalent red-black tree

e

c1

(a) Converting
a 2-node

(b) Converting
a 3-node

(c) Converting
a 4-node

e0 e1

c2

e0

e1

c2

or

e1

e0

c1

c2

e0 e1 e2

c3

e1

c1

e2

c3

c2 e0

c2

Figure 43.3 The conversion from a 2-4 tree to a red-black tree is not unique.

15

3 25 5016

20

34

27

15

3 27 5016

16

34

25

(a) (b) (c)

15

3 25 27 5016

20

34

Let us apply the transformation for the 2-4 tree in Figure 43.1(b). After transforming the
4-node, the tree is as shown in Figure 43.3(a). After transforming the 3-node, the tree is as
shown in Figure 43.3(b). Note the transformation for a 3-node is not unique. Therefore, the
conversion from a 2-4 tree to a red-black tree is not unique. After transforming the 3-node, the
tree could also be as shown in Figure 43.3(c).

M43_LIAN0182_11_SE_C43.indd 3 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-4 Chapter 43 Red-Black Trees

You can prove the conversion results in a red-black tree that satisfies all three properties.

Property 1. The root is black.

Proof: If the root of a 2-4 tree is a 2-node, the root of the red-black tree is black.
If the root of a 2-4 tree is a 3-node or 4-node, the transformation produces a black
parent at the root.

Property 2. Two adjacent nodes cannot be both red.

Proof: Since the parent of a red node is always black, no two adjacent nodes can
be both red.

Property 3. All external nodes have the same black depth.

Proof: When you covert a node in a 2-4 tree to red-black tree nodes, you get one
black node and zero, one, or two red nodes as its children, depending on whether
the original node is a 2-, 3-, or 4-node. Only a leaf 2-4 node may produce external
red-black nodes. Since a 2-4 tree is perfectly balanced, the number of black nodes
in any path from the root to an external node is the same.

 43.2.1 What is a red-black tree? What is an external node? What is black depth?

 43.2.2 Describe the properties of a red-black tree.

 43.2.3 How do you convert a red-black tree to a 2-4 tree? Is the conversion unique?

 43.2.4 How do you convert a 2-4 tree to a red-black tree? Is the conversion unique?

43.3 Designing Classes for Red-Black Trees
A red-black tree designs a class for a red-black tree.

A red-black tree is a binary search tree. So, you can define the RBTree class to extend the BST
class, as shown in Figure 43.4. The BST and TreeNode classes are defined in §26.2.5.

Each node in a red-black tree has a color property. Because the color is either red or black,
it is efficient to use the boolean type to denote it. The RBTreeNode class can be defined to
extend BST.TreeNode with the color property. For convenience, we also provide the methods
for checking the color and setting a new color. Note that TreeNode is defined as a static inner
class in BST. RBTreeNode will be defined as a static inner class in RBTree. Note that BSTNode
contains the data fields element, left, and right, which are inherited in RBTreeNode. So,
RBTreeNode contains four data fields, as pictured in Figure 43.5.

Point
Check

Point
Key

Figure 43.4 The RBTree class extends BST with new implementations for the insert and delete methods.

1
Link

RBTreeNode<E>

–red: boolean

+RBTreeNode()

+RBTreeNode(e: E)

+isRed(): boolean

+isBlack(): boolean

+setRed(): void

+setBlack(): void

TreeNode<E>

+RBTree()

+RBTree(objects: E[])

#createNewNode(): RBTreeNode<E>

+insert(o: E): boolean

+delete(o: E): boolean

RBTree<E>

BST<E>

m 0

Creates a default red-black tree.

Creates an RBTree from an array of objects.

Override this method to create an RBTreeNode.

Returns true if the element is added successfully.

Returns true if the element is removed from the
 tree successfully.

M43_LIAN0182_11_SE_C43.indd 4 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.4 Overriding the insert Method 43-5

In the BST class, the createNewNode() method creates a TreeNode object. This method
is overridden in the RBTree class to create an RBTreeNode. Note the return type of the
createNewNode() method in the BST class is TreeNode, but the return type of the creat-
eNewNode() method in RBTree class is RBTreeNode. This is fine, since RBTreeNode is a
subtype of TreeNode.

Searching an element in a red-black tree is the same as searching in a regular binary search
tree. So, the search method defined in the BST class also works for RBTree.

The insert and delete methods are overridden to insert and delete an element and per-
form operations for coloring and restructuring if necessary to ensure that the three properties
of the red-black tree are satisfied.

Pedagogical Note
Run from http://liveexample.pearsoncmg.com/dsanimation/
RBTree.html to see how a red-black tree works, as shown in Figure 43.6.

Figure 43.6 The animation tool enables you to insert, delete, and search elements in a red-black
tree visually.

43.4 Overriding the insert Method
This section discusses how to insert an element to red-black tree.

A new element is always inserted as a leaf node. If the new node is the root, color it black.
Otherwise, color it red. If the parent of the new node is red, it violates Property 2 of the red-
black tree. We call this a double-red violation.

Let u denote the new node inserted, v the parent of u, w the parent of v, and x the sibling
of v. To fix the double-red violation, consider two cases:

Case 1: x is black or x is null. There are four possible configurations for u, v, w, and x, as shown
in Figures 43.7(a), 43.8(a), 43.9(a), and 43.10(a). In this case, u, v, and w form a 4-node in
the corresponding 2-4 tree, as shown in Figures 43.7(c), 43.8(c), 43.9(c), and 43.10(c), but
are represented incorrectly in the red-black tree. To correct this error, restructure and recolor
three nodes u, v, and w, as shown in Figures 43.7(b), 43.8(b), 43.9(b), and 43.10(b). Note x,
y1 , y2 , and y3 may be null.

Point
Key

Figure 43.5 An RBTreeNode contains data fields element, red, left, and right.

node: RBTreeNode<E>

#element: E
-red: boolean
#left: TreeNode
#right: TreeNode

M43_LIAN0182_11_SE_C43.indd 5 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-6 Chapter 43 Red-Black Trees

Figure 43.8 Case 1.2: v 6 u 6 w

(c)(b)(a)

20

30

u

v

w

x

y1 y2

y3
u

4020

30

v

x

u

w

y3 y1 y2 xy3 y1 y2

40

20 30 40

Figure 43.9 Case 1.3: w 6 v 6 u

(a) (b) (c)

4020

30

w

y2

v

u

x y3 y1

20

u

v

w

x

y1 y2

y3

y2x y3 y1

40

30

20 30 40

Figure 43.10 Case 1.4: w 6 u 6 v

(a) (b) (c)

4020

30

w

y3

u

v

x y1 y2

30

20

u

v

w

x

y1 y2

y3

y3x y1 y2

40

20 30 40

Figure 43.7 Case 1.1: u 6 v 6 w .

xy1 y2 y3

(a) (b) (c)

4020

30

u

x

v

w

y1 y2 y3

30

20

40

u

v

w

x

y1 y2

y3
20 30 40

Case 2: x is red. There are four possible configurations for u, v, w, w, and x, as shown in Fig-
ures 43.11(a), 43.11(b), 43.11(c), and 43.11(d). All of these configurations correspond to an
overflow situation in the corresponding 4-node in a 2-4 tree, as shown in Figure 43.12(a). A
splitting operation is performed to fix the overflow problem in a 2-4 tree, as shown in Figure
43.12(b). We perform an equivalent recoloring operation to fix the problem in a red-black tree.
Color w and u red and color two children of w black. Assume u is a left child of v, as shown

M43_LIAN0182_11_SE_C43.indd 6 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.4 Overriding the insert Method 43-7

in Figure 43.11(a). After recoloring, the nodes are shown in Figure 43.12(c). Now w is red,
if w’s parent is black, the double-red violation is fixed. Otherwise, a new double-red violation
occurs at node w. We need to continue the same process to eliminate the double-red violation
at w, recursively.

A more detailed algorithm for inserting an element is described in Listing 43.1.

Listing 43.1 Inserting an Element to a Red-Black Tree
 1 public boolean insert(E e) {
 2 boolean successful = super.insert(e);
 3 if (!successful)
 4 return false; // e is already in the tree
 5 else {
 6 ensureRBTree(e);
 7 }
 8
 9 return true; // e is inserted
10 }
11
12 /** Ensure that the tree is a red-black tree */
13 private void ensureRBTree(E e) {
14 Get the path that leads to element e from the root.

Figure 43.11 Case 2 has four possible configurations.

30

25

40

u

v

w

50

x
30

35

40

u

v

w

50

x

(a) (b)

(c) (d)

30

45

40

u

v

w

50

x
30

55

40

u

v

w

50

x

Figure 43.12 Splitting a 4-node corresponds to recoloring the nodes in the red-black tree.

(a) A 4-node (b) Splitting a 4-node (c) Recoloring nodes

30

25

40

u

v

w

50
x

30 40 50

Insert a new
element

40

v

50

x

Insert to its parent

25 30

M43_LIAN0182_11_SE_C43.indd 7 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-8 Chapter 43 Red-Black Trees

15 int i = path.size() – 1; // Index to the current node in the path
16 Get u, v from the path. u is the node that contains e and v
17 is the parent of u.
18 Color u red;
19
20 if (u == root) // If e is inserted as the root, set root black
21 u.setBlack();
22 else if (v.isRed())
23 fixDoubleRed(u, v, path, i); // Fix double-red violation at u
24 }
25
26 /** Fix double-red violation at node u */
27 private void fixDoubleRed(RBTreeNode<E> u, RBTreeNode<E> v,
28 ArrayList<TreeNode<E>> path, int i) {
29 Get w from the path. w is the grandparent of u.
30
31 // Get v’s sibling named x
32 RBTreeNode<E> x = (w.left == v) ?
33 (RBTreeNode<E>)(w.right) : (RBTreeNode<E>)(w.left);
34
35 if (x == null || x.isBlack()) {
36 // Case 1: v's sibling x is black
37 if (w.left == v && v.left == u) {
38 // Case 1.1: u < v < w, Restructure and recolor nodes
39 }
40 else if (w.left == v && v.right == u) {
41 // Case 1.2: v < u < w, Restructure and recolor nodes
42 }
43 else if (w.right == v && v.right == u) {
44 // Case 1.3: w < v < u, Restructure and recolor nodes
45 }
46 else {
47 // Case 1.4: w < u < v, Restructure and recolor nodes
48 }
49 }
50 else { // Case 2: v's sibling x is red
51 Color w and u red
52 Color two children of w black.
53
54 if (w is root) {
55 Set w black;
56 }
57 else if (the parent of w is red) {
58 // Propagate along the path to fix new double-red violation
59 u = w;
60 v = parent of w;
61 fixDoubleRed(u, v, path, i – 2); // i – 2 propagates upward
62 }
63 }
64 }

The insert(E e) method (lines 1–10) invokes the insert method in the BST class to create
a new leaf node for the element (line 2). If the element is already in the tree, return false (line
4). Otherwise, invoke ensureRBTree(e) (line 6) to ensure that the tree satisfies the color and
black depth property of the red-black tree.

The ensureRBTree(E e) method (lines 13–24) obtains the path that leads to e from the
root (line 14), as shown in Figure 43.13. This path plays an important role to implement the
algorithm. From this path, you get nodes u and v (lines 16–17). If u is the root, color u black
(lines 20–21). If v is red, a double-red violation occurs at node u. Invoke fixDoubleRed to
fix the problem.

M43_LIAN0182_11_SE_C43.indd 8 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.5 Overriding the delete Method 43-9

The fixDoubleRed method (lines 27–63) fixes the double-red violation. It first obtains w
(the parent of v) from the path (line 29) and x (the sibling of v) (lines 32–33). If x is empty or
a black node, restructure and recolor three nodes u, v, and w to eliminate the problem (lines
35–49). If x is a red node, recolor the nodes u, v, w, and x (lines 51–52). If w is the root, color
w black (lines 54–56). If the parent of w is red, the double-red violation reappears at w. Invoke
fixDoubleRed with new u and v to fix the problem (line 61). Note that now i – 2 points
to the new u in the path. This adjustment is necessary to locate the new nodes w and parent of
w along the path.

Figure 43.14 shows the steps of inserting 34, 3, 50, 20, 15, 16, 25, and 27 into an empty
red-black tree. When inserting 20 into the tree in (d), Case 2 applies to recolor 3 and 50
to black. When inserting 15 into the tree in (g), Case 1.4 applies to restructure and recolor
nodes 15, 20, and 3. When inserting 16 into the tree in (i), Case 2 applies to recolor nodes
3 and 20 to black and nodes 15 and 16 to red. When inserting 27 into the tree in (l), Case 2
applies to recolor nodes 16 and 25 to black and nodes 20 and 27 to red. Now a new double-
red problem occurs at node 20. Apply Case 1.2 to restructure and recolor nodes. The new
tree is shown in (n).

43.5 Overriding the delete Method
This section discusses how to delete an element to red-black tree.

To delete an element from a red-black tree, first search the element in the tree to locate the
node that contains the element. If the element is not in the tree, the method returns false. Let u
be the node that contains the element. If u is an internal node with both left and right children,
find the rightmost node in the left subtree of u. Replace the element in u with the element in
the rightmost node. Now we will only consider deleting external nodes.

Let u be an external node to be deleted. Since u is an external node, it has at most one
child, denoted by childOfu. childOfu may be null. Let parentOfu denote the parent of u,
as shown in Figure 43.15(a). Delete u by connecting childOfu with parentOfu, as shown in
Figure 43.15(b).

Consider the following case:

■■ If u is red, we are done.

■■ If u is black and childOfu is red, color childOfu black to maintain the black height
for childOfu.

■■ Otherwise, assign childOfu a fictitious double black, as shown in Figure 43.16(a). We
call this a double-black problem, which indicates that the black depth is short by 1,
caused by deleting a black node u.

Point
Key

Figure 43.13 The path consists of the nodes from u to the root.

u

root

v

w

path

If path.get(i) is u, path.get(i – 1) is
v and path.get(i – 2) is w.

M43_LIAN0182_11_SE_C43.indd 9 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-10 Chapter 43 Red-Black Trees

Figure 43.14 Inserting into a red-black tree: (a) initial empty tree; (b) inserting 34;
(c) inserting 3; (d) inserting 50; (e) inserting 20 causes a double red; (f) after recolor-
ing (Case 2); (g) inserting 15 causes a double red; (h) after restructuring and recoloring
(Case 1.4); (i) inserting 16 causes a double red; (j) after recoloring (Case 2); (k) insert-
ing 25; (l) inserting 27 causes a double red at 27; (m) a double red at 20 reappears after
 recoloring (Case 2); and (n) after restructuring and recoloring (Case 1.2).

34root in null

(a) (b) (c) (d) (e)

(g) (h)

(j) (k)

(m) (n)

3

34

3

34

50

3

34

50

20

15

34

50

203

3

34

50

20

15

(f)

3

34

50

20

15

34

50

203

16

15

34

50

203

16 25

(l)

15

34

50

203

16 25

27

15

34

50

203

16 25

27

15

20

34

163 25

27

50

(i)

15

34

50

203

16

M43_LIAN0182_11_SE_C43.indd 10 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.5 Overriding the delete Method 43-11

A double black in a red-black tree corresponds to an empty node for u (i.e., underflow
situation) in the corresponding 2-4 tree, as shown in Figure 43.16(b). To fix the double-black
problem, we will perform equivalent transfer and fusion operations. Consider three cases:

Case 1: The sibling y of childOfu is black and has a red child. This case has four possible con-
figurations, as shown in Figures 43.17(a), 43.18(a), 43.19(a), and 43.20(a). The dashed circle
denotes that the node is either red or black. To eliminate the double-black problem, restructure
and recolor the nodes, as shown in Figures 43.17(b), 43.18(b), 43.19(b), and 43.20(b).

Figure 43.16 (a) childOfu is denoted double black. (b) u corresponds to an empty node
in a 2-4 tree.

(a)

u is black

parentOfu

childOfu is
black or null

u

parentOfu

(b)

Figure 43.15 u is an external node and childOfu may be null.

(a) Before deleting u (b) After deleting u

u

parentOfu

childOfu

u

parentOfu

childOfu

Figure 43.17 Case 1.1: The sibling y of childOfu is black and y1 is red.

(a) (b)

parent

childOfu

y

y1

y2

parent
childOfu is
double blacky

y1 y2

Figure 43.18 Case 1.2: The sibling y of childOfu is black and y2 is red.

parent
childOfu is
doubleblack y

y1 y2

parent

childOfu

y2

y

y1

y2.left y2.right

(a) (b)

M43_LIAN0182_11_SE_C43.indd 11 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-12 Chapter 43 Red-Black Trees

Note
Case 1 corresponds to a transfer operation in the 2-4 tree. For example, the correspond-
ing 2-4 tree for Figure 43.17(a) is shown in Figure 43.21(a), and it is transformed into
Figure 43.21(b) through a transfer operation.

Figure 43.19 Case 1.3: The sibling y of childOfu is black and y1 is red.

(a) (b)

parent

childOfu

y1

y

y2

y1.left y1.right

parent

y

y1 y2childOfu is
double black

Figure 43.20 Case 1.4: the sibling y of childOfu is black and y2 is red.

(a) (b)

parent

y

y1 y2childOfu is
double black

parent

childOfu

y

y1

y2

Figure 43.21 Case 1 corresponds to a transfer operation in the corresponding 2-4 tree.

(a) (b)

parent

y

childOfu

y1 u

parent

childOfu

y1 y

Case 2: The sibling y of childOfu is black and its children are black or null. In this case,
change y’s color to red. If parent is red, change it to black, and we are done, as shown in
Figure 43.22. If parent is black, we denote parent double black, as shown in Figure 43.23.
The double-black problem propagates to the parent node.

Figure 43.22 Case 2: Recoloring eliminates the double-black problem if parent is red.

(a) (b)

parent

y

y1 y2

childOfu is
double black

y

y1 y2

childOfu

parent

M43_LIAN0182_11_SE_C43.indd 12 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.5 Overriding the delete Method 43-13

Note
Figures 43.22 and 43.23 show that childOfu is a right child of parent. If childOfu
is a left child of parent, recoloring is performed identically.

Note
Case 2 corresponds to a fusion operation in the 2-4 tree. For example, the corresponding
2-4 tree for Figure 43.22(a) is shown in Figure 43.24(a), and it is transformed into Figure
43.24(b) through a fusion operation.

Case 3: The sibling y of childOfu is red. In this case, perform an adjustment operation. If
y is a left child of parent, let y1 and y2 be the left and right children of y, as shown in
Figure 43.25. If y is a right children of parent, let y1 and y2 be the left and right child of
y, as shown in Figure 43.26. In both cases, color y black and parent red. childOfu is still
a fictitious double-black node. After the adjustment, the sibling of childOfu is now black,
and either Case 1 or Case 2 applies. If Case 1 applies, a one-time restructuring and recoloring
operation eliminates the double-black problem. If Case 2 applies, the double-black problem
cannot reappear, since parent is now red. Therefore, one-time application of Case 1 or Case 2
will complete Case 3.

Note
Case 3 results from the fact that a 3-node may be transformed in two ways to a red-black
tree, as shown in Figure 43.27.

Figure 43.23 Case 2: Recoloring propagates the double-black problem if parent is black.

parent parent

y y

y1 y1
y2 y2

childOfu

(a) (b)

childOfu is
double black

Figure 43.24 Case 2 corresponds to a fusion operation in the corresponding 2-4 tree.

(a) (b)

u

parent

childOfu

y parent

childOfu

y

...

Figure 43.25 Case 3.1: y is a left red child of parent.

(a) (b)

parent

y

y1 y2

childOfu is
double black parenty1

y2

y

childOfu is
double black

M43_LIAN0182_11_SE_C43.indd 13 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-14 Chapter 43 Red-Black Trees

Based on the foregoing discussion, Listing 43.2 presents a more detailed algorithm for delet-
ing an element.

Listing 43.2 Deleting an Element from a Red-Black
Tree
 1 public boolean delete(E e) {
 2 Locate the node to be deleted
 3 if (the node is not found)
 4 return false;
 5
 6 if (the node is an internal node) {
 7 Find the rightmost node in the subtree of the node;
 8 Replace the element in the node with the one in rightmost;
 9 The rightmost node is the node to be deleted now;
10 }
11
12 Obtain the path from the root to the node to be deleted;
13
14 // Delete the last node in the path and propagate if needed
15 deleteLastNodeInPath(path);
16

Figure 43.26 Case 3.2: y is a right red child of parent.

(a) (b)

parent

y

y1 y2childOfu is
double black y1

y2

y

childOfu is
double black

parent

Figure 43.27 A 3-node may be transformed in two ways to red-black tree nodes.

u

y parent

childOfu

y1 y2
or

parent

childOfu is
double black

childOfu is
double black

y

y1 y2

u

childOfu

(a)

(b)

(c)

y

y1

y2
u

childOfu

parent

M43_LIAN0182_11_SE_C43.indd 14 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.5 Overriding the delete Method 43-15

17 size--; // After one element deleted
18 return true; // Element deleted
19 }
20
21 /** Delete the last node from the path. */
22 public void deleteLastNodeInPath(ArrayList<TreeNode<e>> path) {
23 Get the last node u in the path;
24 Get parentOfu and grandparentOfu in the path;
25 Get childOfu from u;
26 Delete node u. Connect childOfu with parentOfu
27
28 // Recolor the nodes and fix double black if needed
29 if (childOfu == root || u.isRed())
30 return; // Done if childOfu is root or if u is red
31 else if (childOfu != null && childOfu.isRed())
32 childOfu.setBlack(); // Set it black, done
33 else // u is black, childOfu is null or black
34 // Fix double black on parentOfu
35 fixDoubleBlack(grandparentOfu, parentOfu, childOfu, path, i);
36 }
37
38 /** Fix the double black problem at node parent */
39 private void fixDoubleBlack(
40 RBTreeNode<E> grandparent, RBTreeNode<E> parent,
41 RBTreeNode<E> db, ArrayList<TreeNode<E>> path, int i) {
42 Obtain y, y1, and y2
43
44 if (y.isBlack() && y1 != null && y1.isRed()) {
45 if (parent.right == db) {
46 // Case 1.1: y is a left black sibling and y1 is red
47 Restructure and recolor parent, y, and y1 to fix the problem;
48 }
49 else {
50 // Case 1.3: y is a right black sibling and y1 is red
51 Restructure and recolor parent, y1, and y to fix the problem;
52 }
53 }
54 else if (y.isBlack() && y2 != null && y2.isRed()) {
55 if (parent.right == db) {
56 // Case 1.2: y is a left black sibling and y2 is red
57 Restructure and recolor parent, y2, and y to fix the problem;
58 }
59 else {
60 // Case 1.4: y is a right black sibling and y2 is red
61 Restructure and recolor parent, y, and y2 to fix the problem;
62 }
63 }
64 else if (y.isBlack()) {
65 // Case 2: y is black and y's children are black or null
66 Recolor y to red;
67
68 if (parent.isRed())
69 parent.setBlack(); // Done
70 else if (parent != root) {
71 // Propagate double black to the parent node
72 // Fix new appearance of double black recursively
73 db = parent;
74 parent = grandparent;
75 grandparent =
76 (i >= 3) ? (RBTreeNode<E>)(path.get(i − 3)) : null;

M43_LIAN0182_11_SE_C43.indd 15 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-16 Chapter 43 Red-Black Trees

77 fixDoubleBlack(grandparent, parent, db, path, i − 1);
78 }
79 }
80 else if (y.isRed()) {
81 if (parent.right == db) {
82 // Case 3.1: y is a left red child of parent
83 parent.left = y2;
84 y.right = parent;
85 }
86 else {
87 // Case 3.2: y is a right red child of parent
88 parent.right = y.left;
89 y.left = parent;
90 }
91
92 parent.setRed(); // Color parent red
93 y.setBlack(); // Color y black
94 connectNewParent(grandparent, parent, y); // y is new parent
95 fixDoubleBlack(y, parent, db, path, i − 1);
96 }
97 }

The delete(E e) method (lines 1–19) locates the node that contains e (line 2). If the node
does not exist, return false (lines 3–4). If the node is an internal node, find the right most
node in its left subtree and replace the element in the node with the element in the right most
node (lines 6–9). Now the node to be deleted is an external node. Obtain the path from the root
to the node (line 12). Invoke deleteLastNodeInPath(path) to delete the last node in the
path and ensure that the tree is still a red-black tree (line 15).

The deleteLastNodeInPath method (lines 22–36) obtains the last node u, parentOfu,
grandparendOfu, and childOfu (lines 23–26). If childOfu is the root or u is red, the tree
is fine (lines 29–30). If childOfu is red, color it black (lines 31–32). We are done. Otherwise,
u is black and childOfu is null or black. Invoke fixDoubleBlack to eliminate the double-
black problem (line 35).

The fixDoubleBlack method (lines 39–97) eliminates the double-black problem. Obtain
y, y1, and y2 (line 42). y is the sibling of the double-black node. y1 and y2 are the left and
right children of y. Consider three cases:

1. If y is black and one of its children is red, the double-black problem can be fixed by
one-time restructuring and recoloring in Case 1 (lines 44–63).

2. If y is black and its children are null or black, change y to red. If parent of y is black,
denote parent to be the new double-black node and invoke fixDoubleBlack recur-
sively (line 77).

3. If y is red, adjust the nodes to make parent a child of y (lines 84, 89) and color parent
red and y black (lines 92–93). Make y the new parent (line 94). Recursively invoke
fixDoubleBlack on the same double-black node with a different color for parent
(line 95).

Figure 43.28 shows the steps of deleting elements. To delete 50 from the tree in Figure 43.28(a),
apply Case 1.2, as shown in Figure 43.28(b). After restructuring and recoloring, the new tree
is as shown in Figure 43.28(c).

When deleting 20 in Figure 43.28(c), 20 is an internal node, and it is replaced by 16, as
shown in Figure 43.28(d). Now Case 2 applies to deleting the rightmost node, as shown in
Figure 43.28(e). Recolor the nodes results in a new tree, as shown in Figure 43.28(f).

When deleting 15, connect node 3 with node 20 and color node 3 black, as shown in
 Figure 43.28(g). We are done.

M43_LIAN0182_11_SE_C43.indd 16 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.5 Overriding the delete Method 43-17

Figure 43.28 Delete elements from a red-black tree.

15

20

34

163 25

27

50

15

20

34

163 25

27

null

15

20

27

163 25 34

(a) Delete 50 (b) Case 1.2 (c) Delete 20

15

16

27

163 25 34

15

16

27

null3 25 34

15

16

27

3 25 34

(d) Copy 16 to replace 20 (e) Case 2 (f) Delete 15

3

16

27

25 34

null

16

27

25 34

16

27

34

25null

(g) Delete 3 (h) Case 3 (i) Case 2

16

27

34

25

16

27

34

27

34null

(j) Delete 25 (k) Delete 16 (l) Case 2

27

34

27 nullroot:

(m) Delete 34 (n) Delete 27 (o) Empty tree

After deleting 25, the new tree is as shown in Figure 43.28(j). Now delete 16. Apply Case
2, as shown in Figure 43.28(k). The new tree is shown in Figure 43.28(l).

After deleting 34, the new tree is as shown in Figure 43.28(m).
After deleting 27, the new tree is as shown in Figure 43.28(n).

M43_LIAN0182_11_SE_C43.indd 17 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-18 Chapter 43 Red-Black Trees

 43.5.1 What are the data fields in RBTreeNode?

 43.5.2 How do you insert an element into a red-black tree and how do you fix the double-
red violation?

 43.5.3 How do you delete an element from a red-black tree and how do you fix the
 double-black problem?

 43.5.4 Show the change of the tree when inserting 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 into it,
in this order.

 43.5.5 For the tree built in the preceding question, show the change of the tree after delet-
ing 1, 2, 3, 4, 10, 9, 7, 5, 8, and 6 from it in this order.

43.6 Implementing RBTree Class
This section implements the RBTree class.

Listing 43.3 gives a complete implementation for the RBTree class.

Listing 43.3 RBTree.java
 1 import java.util.ArrayList;
 2
 3 public class RBTree<E extends Comparable<E>> extends BST<E> {
 4 /** Create a default RB tree */
 5 public RBTree() {
 6 }
 7
 8 /** Create an RB tree from an array of elements */
 9 public RBTree(E[] elements) {
 10 super(elements);
 11 }
 12
 13 @Override /** Override createNewNode to create an RBTreeNode */
 14 protected RBTreeNode<E> createNewNode(E e) {
 15 return new RBTreeNode<E>(e);
 16 }
 17
 18 @Override /** Override the insert method to
 19 balance the tree if necessary */
 20 public boolean insert(E e) {
 21 boolean successful = super.insert(e);
 22 if (!successful)
 23 return false; // e is already in the tree
 24 else {
 25 ensureRBTree(e);
 26 }
 27
 28 return true; // e is inserted
 29 }
 30
 31 /** Ensure that the tree is a red-black tree */
 32 private void ensureRBTree(E e) {
 33 // Get the path that leads to element e from the root
 34 ArrayList<TreeNode<E>> path = path(e);
 35
 36 int i = path.size() − 1; // Index to the current node in the path
 37
 38 // u is the last node in the path. u contains element e
 39 RBTreeNode<E> u = (RBTreeNode<E>)(path.get(i));

Point
Check

Point
Key

M43_LIAN0182_11_SE_C43.indd 18 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.6 Implementing RBTree Class 43-19

 40
 41 // v is the parent of of u, if exists
 42 RBTreeNode<E> v = (u == root) ? null :
 43 (RBTreeNode<E>)(path.get(i − 1));
 44
 45 u.setRed(); // It is OK to set u red
 46
 47 if (u == root) // If e is inserted as the root, set root black
 48 u.setBlack();
 49 else if (v.isRed())
 50 fixDoubleRed(u, v, path, i); // Fix double-red violation at u
 51 }
 52
 53 /** Fix double-red violation at node u */
 54 private void fixDoubleRed(RBTreeNode<E> u, RBTreeNode<E> v,
 55 ArrayList<TreeNode<E>> path, int i) {
 56 // w is the grandparent of u
 57 RBTreeNode<E> w = (RBTreeNode<E>)(path.get(i − 2));
 58 RBTreeNode<E> parentOfw = (w == root) ? null :
 59 (RBTreeNode<E>)path.get(i – 3);
 60
 61 // Get v's sibling named x
 62 RBTreeNode<E> x = (w.left == v) ?
 63 (RBTreeNode<E>)(w.right) : (RBTreeNode<E>)(w.left);
 64
 65 if (x == null || x.isBlack()) {
 66 // Case 1: v's sibling x is black
 67 if (w.left == v && v.left == u) {
 68 // Case 1.1: u < v < w, Restructure and recolor nodes
 69 restructureRecolor(u, v, w, w, parentOfw);
 70
 71 w.left = v.right; // v.right is y3 in Figure 43.6
 72 v.right = w;
 73 }
 74 else if (w.left == v && v.right == u) {
 75 // Case 1.2: v < u < w, Restructure and recolor nodes
 76 restructureRecolor(v, u, w, w, parentOfw);
 77 v.right = u.left;
 78 w.left = u.right;
 79 u.left = v;
 80 u.right = w;
 81 }
 82 else if (w.right == v && v.right == u) {
 83 // Case 1.3: w < v < u, Restructure and recolor nodes
 84 restructureRecolor(w, v, u, w, parentOfw);
 85 w.right = v.left;
 86 v.left = w;
 87 }
 88 else {
 89 // Case 1.4: w < u < v, Restructure and recolor nodes
 90 restructureRecolor(w, u, v, w, parentOfw);
 91 w.right = u.left;
 92 v.left = u.right;
 93 u.left = w;
 94 u.right = v;
 95 }
 96 }
 97 else { // Case 2: v's sibling x is red
 98 // Recolor nodes
 99 w.setRed();
100 u.setRed();

M43_LIAN0182_11_SE_C43.indd 19 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-20 Chapter 43 Red-Black Trees

101 ((RBTreeNode<E>)(w.left)).setBlack();
102 ((RBTreeNode<E>)(w.right)).setBlack();
103
104 if (w == root) {
105 w.setBlack();
106 }
107 else if (((RBTreeNode<E>)parentOfw).isRed()) {
108 // Propagate along the path to fix new double-red violation
109 u = w;
110 v = (RBTreeNode<E>)parentOfw;
111 fixDoubleRed(u, v, path, i − 2); // i – 2 propagates upward
112 }
113 }
114 }
115
116 /** Connect b with parentOfw and recolor a, b, c for a < b < c */
117 private void restructureRecolor(RBTreeNode<E> a, RBTreeNode<E> b,
118 RBTreeNode<E> c, RBTreeNode<E> w, RBTreeNode<E> parentOfw) {
119 if (parentOfw == null)
120 root = b;
121 else if (parentOfw.left == w)
122 parentOfw.left = b;
123 else
124 parentOfw.right = b;
125
126 b.setBlack(); // b becomes the root in the subtree
127 a.setRed(); // a becomes the left child of b
128 c.setRed(); // c becomes the right child of b
129 }
130
131 @Override /** Delete an element from the RBTree.
132 * Return true if the element is deleted successfully
133 * Return false if the element is not in the tree */
134 public boolean delete(E e) {
135 // Locate the node to be deleted
136 TreeNode<E> current = root;
137 while (current != null) {
138 if (e.compareTo(current.element) < 0) {
139 current = current.left;
140 }
141 else if (e.compareTo(current.element) > 0) {
142 current = current.right;
143 }
144 else
145 break; // Element is in the tree pointed by current
146 }
147
148 if (current == null)
149 return false; // Element is not in the tree
150
151 java.util.ArrayList<TreeNode<E>> path;
152
153 // current node is an internal node
154 if (current.left != null && current.right != null) {
155 // Locate the rightmost node in the left subtree of current
156 TreeNode<E> rightMost = current.left;
157 while (rightMost.right != null) {
158 rightMost = rightMost.right; // Keep going to the right
159 }
160

M43_LIAN0182_11_SE_C43.indd 20 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.6 Implementing RBTree Class 43-21

161 path = path(rightMost.element); // Get path before replacement
162
163 // Replace the element in current by the element in rightMost
164 current.element = rightMost.element;
165 }
166 else
167 path = path(e); // Get path to current node
168
169 // Delete the last node in the path and propagate if needed
170 deleteLastNodeInPath(path);
171
172 size--; // After one element deleted
173 return true; // Element deleted
174 }
175
176 /** Delete the last node from the path. */
177 public void deleteLastNodeInPath(ArrayList<TreeNode<E>> path) {
178 int i = path.size() − 1; // Index to the node in the path
179 // u is the last node in the path
180 RBTreeNode<E> u = (RBTreeNode<E>)(path.get(i));
181 RBTreeNode<E> parentOfu = (u == root) ? null :
182 (RBTreeNode<E>)(path.get(i − 1));
183 RBTreeNode<E> grandparentOfu = (parentOfu == null ||
184 parentOfu == root) ? null :
185 (RBTreeNode<E>)(path.get(i − 2));
186 RBTreeNode<E> childOfu = (u.left == null) ?
187 (RBTreeNode<E>)(u.right) : (RBTreeNode<E>)(u.left);
188
189 // Delete node u. Connect childOfu with parentOfu
190 connectNewParent(parentOfu, u, childOfu);
191
192 // Recolor the nodes and fix double black if needed
193 if (childOfu == root || u.isRed())
194 return; // Done if childOfu is root or if u is red
195 else if (childOfu != null && childOfu.isRed())
196 childOfu.setBlack(); // Set it black, done
197 else // u is black, childOfu is null or black
198 // Fix double black on parentOfu
199 fixDoubleBlack(grandparentOfu, parentOfu, childOfu, path, i);
200 }
201
202 /** Fix the double-black problem at node parent */
203 private void fixDoubleBlack(
204 RBTreeNode<E> grandparent, RBTreeNode<E> parent,
205 RBTreeNode<E> db, ArrayList<TreeNode<E>> path, int i) {
206 // Obtain y, y1, and y2
207 RBTreeNode<E> y = (parent.right == db) ?
208 (RBTreeNode<E>)(parent.left) : (RBTreeNode<E>)(parent.right);
209 RBTreeNode<E> y1 = (RBTreeNode<E>)(y.left);
210 RBTreeNode<E> y2 = (RBTreeNode<E>)(y.right);
211
212 if (y.isBlack() && y1 != null && y1.isRed()) {
213 if (parent.right == db) {
214 // Case 1.1: y is a left black sibling and y1 is red
215 connectNewParent(grandparent, parent, y);
216 recolor(parent, y, y1); // Adjust colors
217
218 // Adjust child links
219 parent.left = y.right;

M43_LIAN0182_11_SE_C43.indd 21 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-22 Chapter 43 Red-Black Trees

220 y.right = parent;
221 }
222 else {
223 // Case 1.3: y is a right black sibling and y1 is red
224 connectNewParent(grandparent, parent, y1);
225 recolor(parent, y1, y); // Adjust colors
226
227 // Adjust child links
228 parent.right = y1.left;
229 y.left = y1.right;
230 y1.left = parent;
231 y1.right = y;
232 }
233 }
234 else if (y.isBlack() && y2 != null && y2.isRed()) {
235 if (parent.right == db) {
236 // Case 1.2: y is a left black sibling and y2 is red
237 connectNewParent(grandparent, parent, y2);
238 recolor(parent, y2, y); // Adjust colors
239
240 // Adjust child links
241 y.right = y2.left;
242 parent.left = y2.right;
243 y2.left = y;
244 y2.right = parent;
245 }
246 else {
247 // Case 1.4: y is a right black sibling and y2 is red
248 connectNewParent(grandparent, parent, y);
249 recolor(parent, y, y2); // Adjust colors
250
251 // Adjust child links
252 y.left = parent;
253 parent.right = y1;
254 }
255 }
256 else if (y.isBlack()) {
257 // Case 2: y is black and y’s children are black or null
258 y.setRed(); // Change y to red
259 if (parent.isRed())
260 parent.setBlack(); // Done
261 else if (parent != root) {
262 // Propagate double black to the parent node
263 // Fix new appearance of double black recursively
264 db = parent;
265 parent = grandparent;
266 grandparent =
267 (i >= 3) ? (RBTreeNode<E>)(path.get(i − 3)) : null;
268 fixDoubleBlack(grandparent, parent, db, path, i − 1);
269 }
270 }
271 else { // y.isRed()
272 if (parent.right == db) {
273 // Case 3.1: y is a left red child of parent
274 parent.left = y2;
275 y.right = parent;
276 }
277 else {
278 // Case 3.2: y is a right red child of parent
279 parent.right = y.left;
280 y.left = parent;

M43_LIAN0182_11_SE_C43.indd 22 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.6 Implementing RBTree Class 43-23

281 }
282
283 parent.setRed(); // Color parent red
284 y.setBlack(); // Color y black
285 connectNewParent(grandparent, parent, y); // y is new parent
286 fixDoubleBlack(y, parent, db, path, i − 1);
287 }
288 }
289
290 /** Recolor parent, newParent, and c. Case 1 removal */
291 private void recolor(RBTreeNode<E> parent,
292 RBTreeNode<E> newParent, RBTreeNode<E> c) {
293 // Retain the parent’s color for newParent
294 if (parent.isRed())
295 newParent.setRed();
296 else
297 newParent.setBlack();
298
299 // c and parent become the children of newParent; set them black
300 parent.setBlack();
301 c.setBlack();
302 }
303
304 /** Connect newParent with grandParent */
305 private void connectNewParent(RBTreeNode<E> grandparent,
306 RBTreeNode<E> parent, RBTreeNode<E> newParent) {
307 if (parent == root) {
308 root = newParent;
309 if (root != null)
310 newParent.setBlack();
311 }
312 else if (grandparent.left == parent)
313 grandparent.left = newParent;
314 else
315 grandparent.right = newParent;
316 }
317
318 @Override /** Preorder traversal from a subtree */
319 protected void preorder(TreeNode<E> root) {
320 if (root == null) return;
321 System.out.print(root.element +
322 (((RBTreeNode<E>)root).isRed() ? " (red) " : " (black) "));
323 preorder(root.left);
324 preorder(root.right);
325 }
326
327 /** RBTreeNode is TreeNode plus color indicator */
328 protected static class RBTreeNode<E extends Comparable<E>> extends
329 BST.TreeNode<E> {
330 private boolean red = true; // Indicate node color
331
332 public RBTreeNode(E e) {
333 super(e);
334 }
335
336 public boolean isRed() {
337 return red;
338 }
339
340 public boolean isBlack() {
341 return !red;

M43_LIAN0182_11_SE_C43.indd 23 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-24 Chapter 43 Red-Black Trees

342 }
343
344 public void setBlack() {
345 red = false;
346 }
347
348 public void setRed() {
349 red = true;
350 }
351
352 int blackHeight;
353 }
354 }

The RBTree class extends BST. Like the BST class, the RBTree class has a no-arg constructor
that constructs an empty RBTree (lines 5–6) and a constructor that creates an initial RBTree
from an array of elements (lines 9–11).

The createNewNode() method defined in the BST class creates a TreeNode. This method
is overridden to return an RBTreeNode (lines 14–16). This method is invoked in the insert
method in BST to create a node.

The insert method in RBTree is overridden in lines 20–29. The method first invokes the
insert method in BST, then invokes ensureRBTree(e) (line 25) to ensure that tree is still
a red-black tree after inserting a new element.

The ensureRBTree(E e) method first obtains the path of nodes that lead to element e
from the root (line 34). It obtains u and v (the parent of u) from the path. If u is the root, color
u black (lines 47–48). If v is red, invoke fixDoubleRed to fix the double red on both u and
v (lines 49–50).

The fixDoubleRed(u, v, path, i) method fixes the double-red violation at node u.
The method first obtains w (the grandparent of u from the path) (line 57), parentOfw if exists
(lines 58–59), and x (the sibling of v) (lines 62–63). If x is null or black, consider four sub-
cases to fix the double-red violation (lines 67–96). If x is red, color w and u red and color w’s
two children black (lines 101–104). If w is the root, color w black (lines 104–106). Otherwise,
propagate along the path to fix the new double-red violation (lines 109–111).

The delete(E e) method in RBTree is overridden in lines 134–174. The method
locates the node that contains e (lines 136–146). If the node is null, no element is found (lines
148–149). The method considers two cases:

■■ If the node is internal, find the rightmost node in its left subtree (lines 156–159).
Obtain a path from the root to the rightmost node (line 161), and replace the element
in the node with the element in the rightmost node (line 164).

■■ If the node is external, obtain the path from the root to the node (line 167).

The last node in the path is the node to be deleted. Invoke deleteLastNodeInPath(path)
to delete it and ensure the tree is a red-black after the node is deleted (line 170).

The deleteLastNodeInPath(path) method first obtains u, parentOfu, grand-
parendOfu, and childOfu (lines 180–187). u is the last node in the path. Connect
childOfu as a child of parentOfu (line 190). This in effect deletes u from the tree.
Consider three cases:

■■ If childOfu is the root or childOfu is red, we are done (lines 193–194).

■■ Otherwise, if childOfu is red, color it black (lines 195–196).

■■ Otherwise, invoke fixDoubleBlack to fix the double-black problem on childOfu
(line 199).

M43_LIAN0182_11_SE_C43.indd 24 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.7 Testing the RBTree Class 43-25

The fixDoubleBlack method first obtains y, y1, and y2 (lines 207–210). y is the sibling of
the first double-black node, and y1 and y2 are the left and right children of y. Consider three
cases:

■■ If y is black and y1 or y2 is red, fix the double-black problem for Case 1 (lines
213–255).

■■ Otherwise, if y is black, fix the double-black problem for Case 2 by recoloring the
nodes. If parent is black and not a root, propagate double black to parent and recur-
sively invoke fixDoubleBlack (lines 264–268).

■■ Otherwise, y is red. In this case, adjust the nodes to make parent the child of y (lines
272–281). Invoke fixDoubleBlack with the adjusted nodes (line 286) to fix the
double-black problem.

The preorder(TreeNode<E> root) method is overridden to display the node colors (lines
319–325).

43.7 Testing the RBTree Class
This section gives a test program that uses the RBTree class.

Listing 43.4 gives a test program. The program creates an RBTree initialized with an array
of integers 34, 3, and 50 (lines 4–5), inserts elements in lines 10–22, and deletes elements in
lines 25–46.

Listing 43.4 TestRBTree.java
 1 public class TestRBTree {
 2 public static void main(String[] args) {
 3 // Create an RB tree
 4 RBTree<Integer> tree =
 5 new RBTree<Integer>(new Integer[]{34, 3, 50});
 6 printTree(tree);
 7
 8 tree.insert(20);
 9 printTree(tree);
10
11 tree.insert(15);
12 printTree(tree);
13
14 tree.insert(16);
15 printTree(tree);
16
17 tree.insert(25);
18 printTree(tree);
19
20 tree.insert(27);
21 printTree(tree);
22
23 tree.delete(50);
24 printTree(tree);
25
26 tree.delete(20);
27 printTree(tree);
28
29 tree.delete(15);
30 printTree(tree);
31

Point
Key

M43_LIAN0182_11_SE_C43.indd 25 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-26 Chapter 43 Red-Black Trees

32 tree.delete(3);
33 printTree(tree);
34
35 tree.delete(25);
36 printTree(tree);
37
38 tree.delete(16);
39 printTree(tree);
40
41 tree.delete(34);
42 printTree(tree);
43
44 tree.delete(27);
45 printTree(tree);
46 }
47
48 public static <E extends Comparable<E>>
49 void printTree(BST <E> tree) {
50 // Traverse tree
51 System.out.print("\nInorder (sorted): ");
52 tree.inorder();
53 System.out.print("\nPostorder: ");
54 tree.postorder();
55 System.out.print("\nPreorder: ");
56 tree.preorder();
57 System.out.print("\nThe number of nodes is " + tree.getSize());
58 System.out.println();
59 }
60 }

Inorder (sorted): 3 34 50

Postorder: 3 50 34
Preorder: 34 (black) 3 (red) 50 (red)
The number of nodes is 3

Inorder (sorted): 3 20 34 50
Postorder: 20 3 50 34
Preorder: 34 (black) 3 (black) 20 (red) 50 (black)
The number of nodes is 4

Inorder (sorted): 3 15 20 34 50
Postorder: 3 20 15 50 34
Preorder: 34 (black) 15 (black) 3 (red) 20 (red) 50 (black)
The number of nodes is 5

Inorder (sorted): 3 15 16 20 34 50
Postorder: 3 16 20 15 50 34
Preorder: 34 (black) 15 (red) 3 (black) 20 (black) 16 (red) 50 (black)
The number of nodes is 6

Inorder (sorted): 3 15 16 20 25 34 50
Postorder: 3 16 25 20 15 50 34
Preorder: 34 (black) 15 (red) 3 (black) 20 (black) 16 (red) 25 (red)
 50 (black)
The number of nodes is 7

Inorder (sorted): 3 15 16 20 25 27 34 50
Postorder: 3 16 15 27 25 50 34 20

M43_LIAN0182_11_SE_C43.indd 26 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.8 Performance of the RBTree Class 43-27

Figure 43.14 shows how the tree evolves as elements are added to it, and Figure 43.28 shows
how the tree evolves as elements are deleted from it.

43.8 Performance of the RBTree Class
This search, insertion, and deletion operations take O(logn) time in a red-black tree.

The search, insertion, and deletion times in a red-black tree depend on the height of the tree. A
red-black tree corresponds to a 2–4 tree. When you convert a node in a 2–4 tree to red-black
tree nodes, you get one black node and zero, one, or two red nodes as its children, depending
on whether the original node is a 2-node, 3-node, or 4-node. So, the height of a red-black tree

Point
Key

Preorder: 20 (black) 15 (red) 3 (black) 16 (black) 34 (red) 25 (black)
 27 (red) 50 (black)
The number of nodes is 8

Inorder (sorted): 3 15 16 20 25 27 34
Postorder: 3 16 15 25 34 27 20
Preorder: 20 (black) 15 (red) 3 (black) 16 (black) 27 (red)
 25 (black) 34 (black)
The number of nodes is 7

Inorder (sorted): 3 15 16 25 27 34
Postorder: 3 15 25 34 27 16
Preorder: 16 (black) 15 (black) 3 (red) 27 (red) 25 (black) 34 (black)
The number of nodes is 6

Inorder (sorted): 3 16 25 27 34
Postorder: 3 25 34 27 16
Preorder: 16 (black) 3 (black) 27 (red) 25 (black) 34 (black)
The number of nodes is 5

Inorder (sorted): 16 25 27 34
Postorder: 25 16 34 27
Preorder: 27 (black) 16 (black) 25 (red) 34 (black)
The number of nodes is 4

Inorder (sorted): 16 27 34
Postorder: 16 34 27
Preorder: 27 (black) 16 (black) 34 (black)
The number of nodes is 3

Inorder (sorted): 27 34
Postorder: 34 27
Preorder: 27 (black) 34 (red)
The number of nodes is 2

Inorder (sorted): 27
Postorder: 27
Preorder: 27 (black)
The number of nodes is 1

Inorder (sorted):
Postorder:
Preorder:
The number of nodes is 0

M43_LIAN0182_11_SE_C43.indd 27 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-28 Chapter 43 Red-Black Trees

is at most as twice that of its corresponding 2–4 tree. Since the height of a 2–4 tree is log n,
the height of a red-black tree is 2log n.

A red-black tree has the same time complexity as an AVL tree, as shown in Table 43.1. In
general, a red-black is more efficient than an AVL tree, because a red-black tree requires only
one-time restructuring of the nodes for insert and delete operations.

A red-black tree has the same time complexity as a 2–4 tree, as shown in Table 43.1. In
general, a red-black is more efficient than a 2–4 tree for two reasons:

1. A red-black tree requires only one-time restructuring of the nodes for insert and delete
operations. However, a 2–4 tree may require many splits for an insert operation and
fusion for a delete operation.

2. A red-black tree is a binary search tree. A binary tree can be implemented more space
efficiently than a 2–4 tree, because a node in a 2–4 tree has at most three elements and
four children. Space is wasted for 2-nodes and 3-nodes in a 2–4 tree.

Listing 43.5 gives an empirical test of the performance of AVL trees, 2–4 trees, and red-black
trees.

Listing 43.5 TreePerformanceTest.java
 1 public class TreePerformanceTest {
 2 public static void main(String[] args) {
 3 final int TEST_SIZE = 500000; // Tree size used in the test
 4
 5 // Create an AVL tree
 6 Tree<Integer> tree1 = new AVLTree<Integer>();
 7 System.out.println("AVL tree time: " +
 8 getTime(tree1, TEST_SIZE) + " milliseconds");
 9
10 // Create a 2-4 tree
11 Tree<Integer> tree2 = new Tree24<Integer>();
12 System.out.println("2-4 tree time: "
13 + getTime(tree2, TEST_SIZE) + " milliseconds");
14
15 // Create a red-black tree
16 Tree<Integer> tree3 = new RBTree<Integer>();
17 System.out.println("RB tree time: "
18 + getTime(tree3, TEST_SIZE) + " milliseconds");
19 }
20
21 public static long getTime(Tree<Integer> tree, int testSize) {
22 long startTime = System.currentTimeMillis(); // Start time
23
24 // Create a list to store distinct integers
25 java.util.List<Integer> list = new java.util.ArrayList<Integer>();

Methods Red-Black Tree AVL Tree 2-4 Tree

search (e: E) O(logn) O(logn) O(logn)

insert (e: E) O(logn) O(logn) O(logn)

delete (e: E) O(logn) O(logn) O(logn)

getSize() O(l) O(l) O(l)

isEmpty() O(l) O(l) O(l)

tabLe 43.1 Time Complexities for Methods in RBTree, AVLTree, and Tree234

M43_LIAN0182_11_SE_C43.indd 28 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43.8 Performance of the RBTree Class 43-29

26 for (int i = 0; i < testSize; i++)
27 list.add(i);
28
29 java.util.Collections.shuffle(list); // Shuffle the list
30
31 // Insert elements in the list to the tree
32 for (int i = 0; i < testSize; i++)
33 tree.insert(list.get(i));
34
35 java.util.Collections.shuffle(list); // Shuffle the list
36
37 // Delete elements in the list from the tree
38 for (int i = 0; i < testSize; i++)
39 tree.delete(list.get(i));
40
41 // Return elapse time
42 return System.currentTimeMillis() - startTime;
43 }
44 }

AVL tree time: 7609 milliseconds

2–4 tree time: 8594 milliseconds
RB tree time: 5515 milliseconds

The getTestTime method creates a list of distinct integers from 0 to testSize – 1 (lines
25–27), shuffles the list (line 29), adds the elements from the list to a tree (lines 32–33), shuf-
fles the list again (line 35), removes the elements from the tree (lines 38–39), and finally returns
the execution time (line 42).

The program creates an AVL (line 6), a 2-4 tree (line 11), and a red-black tree (line 16).
The program obtains the execution time for adding and removing 500000 elements in the
three trees.

As you see, the red-black tree performs the best, followed by the AVL tree.

Note
The java.util.TreeSet class in the Java API is implemented using a red-black tree.
Each entry in the set is stored in the tree. Since the search, insert, and delete
methods in a red-black tree take O(log n) time, the get, add, remove, and contains
methods in java.util.TreeSet take O(log n) time.

Note
The java.util.TreeMap class in the Java API is implemented using a red-black tree.
Each entry in the map is stored in the tree. The order of the entries is determined by
their keys. Since the search, insert, and delete methods in a red-black tree take
O(log n) time, the get, put, remove, and containsKey methods in java.util.
TreeMap take O(log n) time.

Key Terms

black depth 43-2
double-black violation 43-11
double-red violation 43-7

external node 43-9
red-black tree 43-2

M43_LIAN0182_11_SE_C43.indd 29 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

43-30 Chapter 43 Red-Black Trees

ChapTer summary

1. A red-black tree is a binary search tree, derived from a 2-4 tree. A red-black tree cor-
responds to a 2-4 tree. You can convert a red-black tree to a 2-4 tree or vice versa.

2. In a red-black tree, each node is colored red or black. The root is always black. Two
adjacent nodes cannot be both red. All external nodes have the same black depth.

3. Since a red-black tree is a binary search tree, the RBTree class extends the BST class.

4. Searching an element in a red-black tree is the same as in binary search tree, since a
red-black tree is a binary search tree.

5. A new element is always inserted as a leaf node. If the new node is the root, color it
black. Otherwise, color it red. If the parent of the new node is red, we have to fix the
double-red violation by reassigning the color and/or restructuring the tree.

6. If a node to be deleted is internal, find the rightmost node in its left subtree. Replace the
element in the node with the element in the rightmost node. Delete the rightmost node.

7. If the external node to be deleted is red, simply reconnect the parent node of the external
node with the child node of the external node.

8. If the external node to be deleted is black, you need to consider several cases to ensure
that black height for external nodes in the tree is maintained correctly.

9. The height of a red-black tree is O(logn). So, the time complexities for the search,
insert, and delete methods are O(logn).

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

 *43.1 (red-black tree to 2-4 tree) Write a program that converts a red-black tree to a 2-4
tree.

 *43.2 (2-4 tree to red-black tree) Write a program that converts a red-black tree to a 2-4
tree.

 ***43.3 (red-black tree animation) Write a GUI program that animates the red-black tree
insert, delete, and search methods, as shown in Figure 43.6.

 **43.4 (Parent reference for RBTree) Suppose the TreeNode class defined in BST con-
tains a reference to the node’s parent, as shown in Exercise 26.17. Implement
the RBTree class to support this change. Write a test program that adds numbers
1, 2, . . . , 100 to the tree and displays the paths for all leaf nodes.

M43_LIAN0182_11_SE_C43.indd 30 5/29/17 10:31 AM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Objectives
■■ To know what JUnit is and how JUnit works (§44.2).

■■ To create and run a JUnit test class from the command window (§44.2).

■■ To create and run a JUnit test class from NetBeans (§44.3).

■■ To create and run a JUnit test class from Eclipse (§44.4).

Testing Using JUnit

CHAPTER

44

M44_LIAN0182_11_SE_C44.indd 1 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44-2 Chapter 44 Testing Using JUnit

44.1 Introduction
JUnit is a tool for testing Java programs.

At the very beginning of this book in Section 2.16, we introduced software development pro-
cess that includes requirements specification, analysis, design, implementation, testing, deploy-
ment, and maintenance. Testing is an important part of this process. This chapter introduces
how to test Java classes using JUnit.

44.2 JUnit Basics
To test a class, you need to write a test class and run it through JUnit to generate a
report for the class.

JUnit is the de facto framework for testing Java programs. JUnit is a third-party open-source
library packed in a jar file. The jar file contains a tool called test runner, which is used to run
test programs. Suppose you have a class named A. To test this class, you write a test class
named ATest. This test class, called a test runner, contains the methods you write for testing
class A. The test runner executes ATest to generate a test report, as shown in Figure 44.1.

Point
Key

Point
Key

Figure 44.1 JUnit test runner executes the test class to generate a test report.

Test Runner

Test ReportTest Class File

…
e.g., ATest.class

A.class
…

Figure 44.2 The JUnit test runner displays the JUnit version.

You will see how JUnit works from an example. To create the example, first you need to
download JUnit from http://sourceforge.net/projects/junit/files/. At present, the latest version
is junit-4.10.jar. Download this file to c:\book\lib and add it to the classpath environment
variable as follows:

set classpath=.;%classpath%;c:\book\lib\junit-4.10.jar

To test if this environment variable is set correctly, open a new command window, and type
the following command:

java org.junit.runner.JUnitCore

You should see the message displayed as shown in Figure 44.2.

To use JUnit, create a test class. By convention, if the class to be tested is named A, the test
class should be named ATest. A simple template of a test class may look like this:

M44_LIAN0182_11_SE_C44.indd 2 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44.2 JUnit Basics 44-3

 1 package mytest;
 2
 3 import org.junit.*;
 4 import static org.junit.Assert.*;
 5
 6 public class ATest {
 7 @Test
 8 public void m1() {
 9 // Write a test method
10 }
11
12 @Test
13 public void m2() {
14 // Write another test method
15 }
16
17 @Before
18 public void setUp() throws Exception {
19 // Common objects used by test methods may be set up here
20 }
21 }

This class should be placed in a directory under mytest. Suppose the class is placed under
c:\book\mytest. You need to compile it from the mytest directory and run it from c:\book as
shown in the following screen shot.

Note the command to run the test from the console is:

java org.junit.runner.JUnitCore mytest.ATest

When this command is executed, JUnitCore controls the execution of ATest. It first executes
the setUp() method to set up the common objects used for the test, and then executes test
methods m1 and m2 in this order. You may define multiple test methods if desirable.

The following methods can be used to implement a test method:

assertTrue(booleanExpression)
The method reports success if the booleanExpression evaluates true.

assertEquals(Object, Object)
The method reports success if the two objects are the same using the equals method.

assertNull(Object)
The method reports success if the object reference passed is null.

fail(String)
The method causes the test to fail and prints out the string.

M44_LIAN0182_11_SE_C44.indd 3 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44-4 Chapter 44 Testing Using JUnit

Listing 44.1 is an example of a test class for testing java.util.ArrayList.

Listing 44.1 ArrayListTest.java
 1 package mytest;
 2
 3 import org.junit.*;
 4 import static org.junit.Assert.*;
 5 import java.util.*;
 6
 7 public class ArrayListTest {
 8 private ArrayList<String> list = new ArrayList<String>();
 9
10 @Before
11 public void setUp() throws Exception {
12 }
13
14 @Test
15 public void testInsertion() {
16 list.add("Beijing");
17 assertEquals("Beijing", list.get(0));
18 list.add("Shanghai");
19 list.add("Hongkong");
20 assertEquals("Hongkong", list.get(list.size() – 1));
21 }
22
23 @Test
24 public void testDeletion() {
25 list.clear();
26 assertTrue(list.isEmpty());
27
28 list.add("A");
29 list.add("B");
30 list.add("C");
31 list.remove("B");
32 assertEquals(2, list.size());
33 }
34 }

A test run of the program is shown in Figure 44.3. Note that you have to first compile Array-
ListTest.java. The ArrayListTest class is placed in the mytest package. So you should
place ArrayListTest.java in the directory named mytest.

Figure 44.3 The test report is displayed from running ArrayListTest.

M44_LIAN0182_11_SE_C44.indd 4 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44.2 JUnit Basics 44-5

No errors are reported in this JUnit run. If you mistakenly change

assertEquals(2, list.size());

in line 32 to

assertEquals(3, list.size());

Run ArrayListTest now. You will see an error reported as shown in Figure 44.4.

Figure 44.4 The test report reports an error.

You can define any number of test methods. In this example, the two test methods test-
Insertion and testDeletion are defined. JUnit executes testInsertion and test-
Deletion in this order.

Note
The test class must be placed in a named package such as mytest in this example. The
JUnit will not work if the test class is placed a default package.

Listing 44.2 gives a test class for testing the Loan class in Listing 10.2. For convenience,
we create Loan.java in the same directory with LoanTest.java. The Loan class is shown in
Listing 44.3.

Listing 44.2 LoanTest.java
 1 package mytest;
 2
 3 import org.junit.*;
 4 import static org.junit.Assert.*;
 5
 6 public class LoanTest {
 7 @Before
 8 public void setUp() throws Exception {
 9 }
10
11 @Test
12 public void testPaymentMethods() {
13 double annualInterestRate = 2.5;
14 int numberOfYears = 5;
15 double loanAmount = 1000;
16 Loan loan = new Loan(annualInterestRate, numberOfYears,
17 loanAmount);
18

M44_LIAN0182_11_SE_C44.indd 5 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44-6 Chapter 44 Testing Using JUnit

19 assertTrue(loan.getMonthlyPayment() ==
20 getMonthlyPayment(annualInterestRate, numberOfYears,
21 loanAmount));
22 assertTrue(loan.getTotalPayment() ==
23 getTotalPayment(annualInterestRate, numberOfYears,
24 loanAmount));
25 }
26
27 /** Find monthly payment */
28 private double getMonthlyPayment(double annualInterestRate,
29 int numberOfYears, double loanAmount) {
30 double monthlyInterestRate = annualInterestRate / 1200;
31 double monthlyPayment = loanAmount * monthlyInterestRate / (1 –
32 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
33 return monthlyPayment;
34 }
35
36 /** Find total payment */
37 public double getTotalPayment(double annualInterestRate,
38 int numberOfYears, double loanAmount) {
39 return getMonthlyPayment(annualInterestRate, numberOfYears,
40 loanAmount) * numberOfYears * 12;
41 }
42 }

Listing 44.3 Loan.java
 1 package mytest;
 2
 3 public class Loan {
 4 private double annualInterestRate;
 5 private int numberOfYears;
 6 private double loanAmount;
 7 private java.util.Date loanDate;
 8
 9 /** Default constructor */
10 public Loan() {
11 this(2.5, 1, 1000);
12 }
13
14 /** Construct a loan with specified annual interest rate,
15 number of years, and loan amount
16 */
17 public Loan(double annualInterestRate, int numberOfYears,
18 double loanAmount) {
19 this.annualInterestRate = annualInterestRate;
20 this.numberOfYears = numberOfYears;
21 this.loanAmount = loanAmount;
22 loanDate = new java.util.Date();
23 }
24
25 /** Return annualInterestRate */
26 public double getAnnualInterestRate() {
27 return annualInterestRate;
28 }
29
30 /** Set a new annualInterestRate */
31 public void setAnnualInterestRate(double annualInterestRate) {
32 this.annualInterestRate = annualInterestRate;
33 }

M44_LIAN0182_11_SE_C44.indd 6 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44.2 JUnit Basics 44-7

34
35 /** Return numberOfYears */
36 public int getNumberOfYears() {
37 return numberOfYears;
38 }
39
40 /** Set a new numberOfYears */
41 public void setNumberOfYears(int numberOfYears) {
42 this.numberOfYears = numberOfYears;
43 }
44
45 /** Return loanAmount */
46 public double getLoanAmount() {
47 return loanAmount;
48 }
49
50 /** Set a newloanAmount */
51 public void setLoanAmount(double loanAmount) {
52 this.loanAmount = loanAmount;
53 }
54
55 /** Find monthly payment */
56 public double getMonthlyPayment() {
57 double monthlyInterestRate = annualInterestRate / 1200;
58 double monthlyPayment = loanAmount * monthlyInterestRate / (1 –
59 (1 / Math.pow(1 + monthlyInterestRate, numberOfYears * 12)));
60 return monthlyPayment;
61 }
62
63 /** Find total payment */
64 public double getTotalPayment() {
65 double totalPayment = getMonthlyPayment() * numberOfYears * 12;
66 return totalPayment;
67 }
68
69 /** Return loan date */
70 public java.util.Date getLoanDate() {
71 return loanDate;
72 }
73 }

The testPaymentMethods() in LoanTest creates an instance of Loan (line 16–17) and
tests whether loan.getMonthlyPayment() returns the same value as getMonthlyPayment
(annualInterestRate, numberOfYears, loanAmount). The latter method is defined
in the LoanTest class (lines 28–34).

Figure 44.5 The JUnit test runner executes LoanTest and reports no errors.

M44_LIAN0182_11_SE_C44.indd 7 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44-8 Chapter 44 Testing Using JUnit

The testPaymentMethods() also tests whether loan.getTotalPayment() returns
the same value as getTotalPayment(annualInterestRate, numberOfYears, loan-
Amount). The latter method is defined in the LoanTest class (lines 37–41).

A sample run of the program is shown in Figure 44.5.

 44.2.1 What is JUnit?

 44.2.2 What is a JUnit test runner?

 44.2.3 What is a test class? How do you create a test class?

 44.2.4 How do you use the assertTrue method?

 44.2.5 How do you use the assertEquals method?

44.3 Using JUnit from NetBeans
JUnit is intergrated with NetBeans. Using NetBeans, the test program can be auto-
matically generated and the test process can be automated.

An IDE such as NetBeans and Eclipse can greatly simplify the process for creating and run-
ning test classes. This section introduces using JUnit from NetBeans, and the next section will
introduce using JUnit from Eclipse.

If you are not familiar with NetBeans, see Supplement II.B. Assume you have installed
NetBeans 8 or higher. Create a project named chapter44 as follows:

Step 1: Choose File, New Project to display the New Project dialog box.

Step 2: Choose Java in the Categories section and Java Application in the Projects
 section. Click Next to display the New Java Application dialog box.

Step 3: Enter chapter44 as the Project Name and c:\book as Project Location. Click
Finish to create the project as shown in Figure 44.6.

To demonstrate how to create a test class, we first create a class to be tested. Let the class be
Loan from Listing 10.2. Here are the steps to create the Loan class under chapter44.

Point
Check

Point
Key

Figure 44.6 A new project named chapter44 is created.

M44_LIAN0182_11_SE_C44.indd 8 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44.3 Using JUnit from NetBeans 44-9

Step 1: Right-click the project node chapter44 and choose New, Java Class to display
the New Java Class dialog box.

Step 2: Enter Loan as Class Name and chapter44 in the Package field and click Finish
to create the class.

Step 3: Copy the code in Listing 10.2 to the Loan class and make sure the first line is
package chapter44, as shown in Figure 44.7.

Figure 44.7 The Loan class is created.

Figure 44.8 The Create Tests dialog box creates a Test class.

Now you can create a test class to test the Loan class as follows:

Step 1: Right-click Loan.java in the project to display a context menu and choose Tools,
Create/Update Test to display the Create Test dialog box, as shown in Figure 44.8.

M44_LIAN0182_11_SE_C44.indd 9 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44-10 Chapter 44 Testing Using JUnit

Figure 44.9 You should select JUnit 4.x framework to create test classes.

Figure 44.10 The LoanTest class is automatically generated.

Step 2: Click OK. You will see the Select JUnit version dialog box displayed as
shown in Figure 44.9. Choose Junit 4.x. Click OK to generate a test class named
LoanTest as shown in Figure 44.10. Note that LoanTest.java is placed under the Test
Packages node in the project.

M44_LIAN0182_11_SE_C44.indd 10 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44.4 Using JUnit from Eclipse 44-11

44.4 Using JUnit from Eclipse
JUnit is intergrated with Eclipse. Using Eclipse, the test program can be automati-
cally generated and the test process can be automated.

This section introduces using JUnit from Eclipse. If you are not familiar with Eclipse, see
Supplement II.D. Assume you have installed Eclipse 4.5 or higher. Create a project named
chapter50 as follows:

Step 1: Choose File, New Java Project to display the New Java Project dialog box, as
shown in Figure 44.12.

Step 2: Enter chapter50 in the project name field and click Finish to create the
project.

To demonstrate how to create a test class, we first create a class to be tested. Let the class be
Loan from Listing 10.2. Here are the steps to create the Loan class under chapter44.

Point
Key

Figure 44.11 The test report is displayed after the LoanTest class is executed.

You can now modify LoanTest by copying the code from Listing 44.2. Run LoanTest.java.
You will see the test report as shown in Figure 44.11.

M44_LIAN0182_11_SE_C44.indd 11 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44-12 Chapter 44 Testing Using JUnit

Figure 44.12 The New Java Project dialog creates a new project.

Step 1: Right-click the project node chapter44 and choose New, Class to display the
New Java Class dialog box, as shown in Figure 44.13.

Step 2: Enter mytest in the Package field and click Finish to create the class.

Step 3: Copy the code in Listing 10.2 to the Loan class and make sure the first line is
package mytest, as shown in Figure 44.14.

Now you can create a test class to test the Loan class as follows:

Step 1: Right-click Loan.java in the project to display a context menu and choose
New, JUnit Test Case to display the New JUnit Test Case dialog box, as shown in
 Figure 44.15.

Step 2: Click Finish. You will see a dialog prompting you to add JUnit 4 to the project
build path. Click OK to add it. Now a test class named LoanTest is created as shown in
Figure 44.16.

You can now modify LoanTest by copying the code from Listing 44.2. Run LoanTest.java.
You will see the test report as shown in Figure 44.17.

JUnit 44-2
JUnitCore 44-2

test class 44-2
test runner 44-2

Key Terms

M44_LIAN0182_11_SE_C44.indd 12 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44.4 Using JUnit from Eclipse 44-13

Figure 44.13 The New Java Class dialog creates a new Java class.

Figure 44.14 The Loan class is created.

M44_LIAN0182_11_SE_C44.indd 13 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

44-14 Chapter 44 Testing Using JUnit

Figure 44.15 The New JUnit Test Case dialog box creates a Test class.

Figure 44.16 The LoanTest class is automatically generated.

M44_LIAN0182_11_SE_C44.indd 14 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programming Exercises 44-15

ChapTer summary

1. JUnit is an open-source framework for testing Java programs.

2. To test a Java class, you create a test class for the class to be tested and use JUnit’s test
runner to execute the test class to generate a test report.

3. You can create and run a test class from the command window or use a tool such as
NetBeans and Eclipse.

Quiz

Answer the quiz for this chapter online at the book Companion Website.

programming exerCises

 44.1 Write a test class to test the methods length, charAt, substring, and indexOf
in the java.lang.String class.

 44.2 Write a test class to test the methods add, remove, addAll, removeAll, size,
isEmpty, and contains in the java.util.HashSet class.

 44.3 Write a test class to test the method isPrime in Listing 6.7, PrimeNumberMethod.
java.

 44.4 Write a test class to test the methods getBMI and getStatus in the BMI class in
Listing 10.4.

Figure 44.17 The test report is displayed after the LoanTest class is executed.

M44_LIAN0182_11_SE_C44.indd 15 5/26/17 7:18 PM

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

